1 | |
---|
2 | from nevow import inevow, rend, loaders, tags as T |
---|
3 | import math |
---|
4 | import util |
---|
5 | |
---|
6 | # factorial and binomial copied from |
---|
7 | # http://mail.python.org/pipermail/python-list/2007-April/435718.html |
---|
8 | |
---|
9 | def div_ceil(n, d): |
---|
10 | """ |
---|
11 | The smallest integer k such that k*d >= n. |
---|
12 | """ |
---|
13 | return (n/d) + (n%d != 0) |
---|
14 | |
---|
15 | def factorial(n): |
---|
16 | """factorial(n): return the factorial of the integer n. |
---|
17 | factorial(0) = 1 |
---|
18 | factorial(n) with n<0 is -factorial(abs(n)) |
---|
19 | """ |
---|
20 | result = 1 |
---|
21 | for i in range(1, abs(n)+1): |
---|
22 | result *= i |
---|
23 | assert n >= 0 |
---|
24 | return result |
---|
25 | |
---|
26 | def binomial(n, k): |
---|
27 | assert 0 <= k <= n |
---|
28 | if k == 0 or k == n: |
---|
29 | return 1 |
---|
30 | # calculate n!/k! as one product, avoiding factors that |
---|
31 | # just get canceled |
---|
32 | P = k+1 |
---|
33 | for i in range(k+2, n+1): |
---|
34 | P *= i |
---|
35 | # if you are paranoid: |
---|
36 | # C, rem = divmod(P, factorial(n-k)) |
---|
37 | # assert rem == 0 |
---|
38 | # return C |
---|
39 | return P//factorial(n-k) |
---|
40 | |
---|
41 | class ProvisioningTool(rend.Page): |
---|
42 | addSlash = True |
---|
43 | docFactory = loaders.xmlfile(util.sibling("provisioning.xhtml")) |
---|
44 | |
---|
45 | def render_forms(self, ctx, data): |
---|
46 | req = inevow.IRequest(ctx) |
---|
47 | |
---|
48 | def getarg(name, astype=int): |
---|
49 | if req.method != b"POST": |
---|
50 | return None |
---|
51 | if name in req.fields: |
---|
52 | return astype(req.fields[name].value) |
---|
53 | return None |
---|
54 | return self.do_forms(getarg) |
---|
55 | |
---|
56 | |
---|
57 | def do_forms(self, getarg): |
---|
58 | filled = getarg("filled", bool) |
---|
59 | |
---|
60 | def get_and_set(name, options, default=None, astype=int): |
---|
61 | current_value = getarg(name, astype) |
---|
62 | i_select = T.select(name=name) |
---|
63 | for (count, description) in options: |
---|
64 | count = astype(count) |
---|
65 | if ((current_value is not None and count == current_value) or |
---|
66 | (current_value is None and count == default)): |
---|
67 | o = T.option(value=str(count), selected="true")[description] |
---|
68 | else: |
---|
69 | o = T.option(value=str(count))[description] |
---|
70 | i_select = i_select[o] |
---|
71 | if current_value is None: |
---|
72 | current_value = default |
---|
73 | return current_value, i_select |
---|
74 | |
---|
75 | sections = {} |
---|
76 | def add_input(section, text, entry): |
---|
77 | if section not in sections: |
---|
78 | sections[section] = [] |
---|
79 | sections[section].extend([T.div[text, ": ", entry], "\n"]) |
---|
80 | |
---|
81 | def add_output(section, entry): |
---|
82 | if section not in sections: |
---|
83 | sections[section] = [] |
---|
84 | sections[section].extend([entry, "\n"]) |
---|
85 | |
---|
86 | def build_section(section): |
---|
87 | return T.fieldset[T.legend[section], sections[section]] |
---|
88 | |
---|
89 | def number(value, suffix=""): |
---|
90 | scaling = 1 |
---|
91 | if value < 1: |
---|
92 | fmt = "%1.2g%s" |
---|
93 | elif value < 100: |
---|
94 | fmt = "%.1f%s" |
---|
95 | elif value < 1000: |
---|
96 | fmt = "%d%s" |
---|
97 | elif value < 1e6: |
---|
98 | fmt = "%.2fk%s"; scaling = 1e3 |
---|
99 | elif value < 1e9: |
---|
100 | fmt = "%.2fM%s"; scaling = 1e6 |
---|
101 | elif value < 1e12: |
---|
102 | fmt = "%.2fG%s"; scaling = 1e9 |
---|
103 | elif value < 1e15: |
---|
104 | fmt = "%.2fT%s"; scaling = 1e12 |
---|
105 | elif value < 1e18: |
---|
106 | fmt = "%.2fP%s"; scaling = 1e15 |
---|
107 | else: |
---|
108 | fmt = "huge! %g%s" |
---|
109 | return fmt % (value / scaling, suffix) |
---|
110 | |
---|
111 | user_counts = [(5, "5 users"), |
---|
112 | (50, "50 users"), |
---|
113 | (200, "200 users"), |
---|
114 | (1000, "1k users"), |
---|
115 | (10000, "10k users"), |
---|
116 | (50000, "50k users"), |
---|
117 | (100000, "100k users"), |
---|
118 | (500000, "500k users"), |
---|
119 | (1000000, "1M users"), |
---|
120 | ] |
---|
121 | num_users, i_num_users = get_and_set("num_users", user_counts, 50000) |
---|
122 | add_input("Users", |
---|
123 | "How many users are on this network?", i_num_users) |
---|
124 | |
---|
125 | files_per_user_counts = [(100, "100 files"), |
---|
126 | (1000, "1k files"), |
---|
127 | (10000, "10k files"), |
---|
128 | (100000, "100k files"), |
---|
129 | (1e6, "1M files"), |
---|
130 | ] |
---|
131 | files_per_user, i_files_per_user = get_and_set("files_per_user", |
---|
132 | files_per_user_counts, |
---|
133 | 1000) |
---|
134 | add_input("Users", |
---|
135 | "How many files for each user? (avg)", |
---|
136 | i_files_per_user) |
---|
137 | |
---|
138 | space_per_user_sizes = [(1e6, "1MB"), |
---|
139 | (10e6, "10MB"), |
---|
140 | (100e6, "100MB"), |
---|
141 | (200e6, "200MB"), |
---|
142 | (1e9, "1GB"), |
---|
143 | (2e9, "2GB"), |
---|
144 | (5e9, "5GB"), |
---|
145 | (10e9, "10GB"), |
---|
146 | (100e9, "100GB"), |
---|
147 | (1e12, "1TB"), |
---|
148 | (2e12, "2TB"), |
---|
149 | (5e12, "5TB"), |
---|
150 | ] |
---|
151 | # Estimate ~5gb per user as a more realistic case |
---|
152 | space_per_user, i_space_per_user = get_and_set("space_per_user", |
---|
153 | space_per_user_sizes, |
---|
154 | 5e9) |
---|
155 | add_input("Users", |
---|
156 | "How much data for each user? (avg)", |
---|
157 | i_space_per_user) |
---|
158 | |
---|
159 | sharing_ratios = [(1.0, "1.0x"), |
---|
160 | (1.1, "1.1x"), |
---|
161 | (2.0, "2.0x"), |
---|
162 | ] |
---|
163 | sharing_ratio, i_sharing_ratio = get_and_set("sharing_ratio", |
---|
164 | sharing_ratios, 1.0, |
---|
165 | float) |
---|
166 | add_input("Users", |
---|
167 | "What is the sharing ratio? (1.0x is no-sharing and" |
---|
168 | " no convergence)", i_sharing_ratio) |
---|
169 | |
---|
170 | # Encoding parameters |
---|
171 | encoding_choices = [("3-of-10-5", "3.3x (3-of-10, repair below 5)"), |
---|
172 | ("3-of-10-8", "3.3x (3-of-10, repair below 8)"), |
---|
173 | ("5-of-10-7", "2x (5-of-10, repair below 7)"), |
---|
174 | ("8-of-10-9", "1.25x (8-of-10, repair below 9)"), |
---|
175 | ("27-of-30-28", "1.1x (27-of-30, repair below 28"), |
---|
176 | ("25-of-100-50", "4x (25-of-100, repair below 50)"), |
---|
177 | ] |
---|
178 | encoding_parameters, i_encoding_parameters = \ |
---|
179 | get_and_set("encoding_parameters", |
---|
180 | encoding_choices, "3-of-10-5", str) |
---|
181 | encoding_pieces = encoding_parameters.split("-") |
---|
182 | k = int(encoding_pieces[0]) |
---|
183 | assert encoding_pieces[1] == "of" |
---|
184 | n = int(encoding_pieces[2]) |
---|
185 | # we repair the file when the number of available shares drops below |
---|
186 | # this value |
---|
187 | repair_threshold = int(encoding_pieces[3]) |
---|
188 | |
---|
189 | add_input("Servers", |
---|
190 | "What are the default encoding parameters?", |
---|
191 | i_encoding_parameters) |
---|
192 | |
---|
193 | # Server info |
---|
194 | num_server_choices = [ (5, "5 servers"), |
---|
195 | (10, "10 servers"), |
---|
196 | (15, "15 servers"), |
---|
197 | (30, "30 servers"), |
---|
198 | (50, "50 servers"), |
---|
199 | (100, "100 servers"), |
---|
200 | (200, "200 servers"), |
---|
201 | (300, "300 servers"), |
---|
202 | (500, "500 servers"), |
---|
203 | (1000, "1k servers"), |
---|
204 | (2000, "2k servers"), |
---|
205 | (5000, "5k servers"), |
---|
206 | (10e3, "10k servers"), |
---|
207 | (100e3, "100k servers"), |
---|
208 | (1e6, "1M servers"), |
---|
209 | ] |
---|
210 | num_servers, i_num_servers = \ |
---|
211 | get_and_set("num_servers", num_server_choices, 30, int) |
---|
212 | add_input("Servers", |
---|
213 | "How many servers are there?", i_num_servers) |
---|
214 | |
---|
215 | # availability is measured in dBA = -dBF, where 0dBF is 100% failure, |
---|
216 | # 10dBF is 10% failure, 20dBF is 1% failure, etc |
---|
217 | server_dBA_choices = [ (10, "90% [10dBA] (2.4hr/day)"), |
---|
218 | (13, "95% [13dBA] (1.2hr/day)"), |
---|
219 | (20, "99% [20dBA] (14min/day or 3.5days/year)"), |
---|
220 | (23, "99.5% [23dBA] (7min/day or 1.75days/year)"), |
---|
221 | (30, "99.9% [30dBA] (87sec/day or 9hours/year)"), |
---|
222 | (40, "99.99% [40dBA] (60sec/week or 53min/year)"), |
---|
223 | (50, "99.999% [50dBA] (5min per year)"), |
---|
224 | ] |
---|
225 | server_dBA, i_server_availability = \ |
---|
226 | get_and_set("server_availability", |
---|
227 | server_dBA_choices, |
---|
228 | 20, int) |
---|
229 | add_input("Servers", |
---|
230 | "What is the server availability?", i_server_availability) |
---|
231 | |
---|
232 | drive_MTBF_choices = [ (40, "40,000 Hours"), |
---|
233 | ] |
---|
234 | drive_MTBF, i_drive_MTBF = \ |
---|
235 | get_and_set("drive_MTBF", drive_MTBF_choices, 40, int) |
---|
236 | add_input("Drives", |
---|
237 | "What is the hard drive MTBF?", i_drive_MTBF) |
---|
238 | # http://www.tgdaily.com/content/view/30990/113/ |
---|
239 | # http://labs.google.com/papers/disk_failures.pdf |
---|
240 | # google sees: |
---|
241 | # 1.7% of the drives they replaced were 0-1 years old |
---|
242 | # 8% of the drives they repalced were 1-2 years old |
---|
243 | # 8.6% were 2-3 years old |
---|
244 | # 6% were 3-4 years old, about 8% were 4-5 years old |
---|
245 | |
---|
246 | drive_size_choices = [ (100, "100 GB"), |
---|
247 | (250, "250 GB"), |
---|
248 | (500, "500 GB"), |
---|
249 | (750, "750 GB"), |
---|
250 | (1000, "1000 GB"), |
---|
251 | (2000, "2000 GB"), |
---|
252 | (3000, "3000 GB"), |
---|
253 | ] |
---|
254 | drive_size, i_drive_size = \ |
---|
255 | get_and_set("drive_size", drive_size_choices, 3000, int) |
---|
256 | drive_size = drive_size * 1e9 |
---|
257 | add_input("Drives", |
---|
258 | "What is the capacity of each hard drive?", i_drive_size) |
---|
259 | drive_failure_model_choices = [ ("E", "Exponential"), |
---|
260 | ("U", "Uniform"), |
---|
261 | ] |
---|
262 | drive_failure_model, i_drive_failure_model = \ |
---|
263 | get_and_set("drive_failure_model", |
---|
264 | drive_failure_model_choices, |
---|
265 | "E", str) |
---|
266 | add_input("Drives", |
---|
267 | "How should we model drive failures?", i_drive_failure_model) |
---|
268 | |
---|
269 | # drive_failure_rate is in failures per second |
---|
270 | if drive_failure_model == "E": |
---|
271 | drive_failure_rate = 1.0 / (drive_MTBF * 1000 * 3600) |
---|
272 | else: |
---|
273 | drive_failure_rate = 0.5 / (drive_MTBF * 1000 * 3600) |
---|
274 | |
---|
275 | # deletion/gc/ownership mode |
---|
276 | ownership_choices = [ ("A", "no deletion, no gc, no owners"), |
---|
277 | ("B", "deletion, no gc, no owners"), |
---|
278 | ("C", "deletion, share timers, no owners"), |
---|
279 | ("D", "deletion, no gc, yes owners"), |
---|
280 | ("E", "deletion, owner timers"), |
---|
281 | ] |
---|
282 | ownership_mode, i_ownership_mode = \ |
---|
283 | get_and_set("ownership_mode", ownership_choices, |
---|
284 | "A", str) |
---|
285 | add_input("Servers", |
---|
286 | "What is the ownership mode?", i_ownership_mode) |
---|
287 | |
---|
288 | # client access behavior |
---|
289 | access_rates = [ (1, "one file per day"), |
---|
290 | (10, "10 files per day"), |
---|
291 | (100, "100 files per day"), |
---|
292 | (1000, "1k files per day"), |
---|
293 | (10e3, "10k files per day"), |
---|
294 | (100e3, "100k files per day"), |
---|
295 | ] |
---|
296 | download_files_per_day, i_download_rate = \ |
---|
297 | get_and_set("download_rate", access_rates, |
---|
298 | 100, int) |
---|
299 | add_input("Users", |
---|
300 | "How many files are downloaded per day?", i_download_rate) |
---|
301 | download_rate = 1.0 * download_files_per_day / (24*60*60) |
---|
302 | |
---|
303 | upload_files_per_day, i_upload_rate = \ |
---|
304 | get_and_set("upload_rate", access_rates, |
---|
305 | 10, int) |
---|
306 | add_input("Users", |
---|
307 | "How many files are uploaded per day?", i_upload_rate) |
---|
308 | upload_rate = 1.0 * upload_files_per_day / (24*60*60) |
---|
309 | |
---|
310 | delete_files_per_day, i_delete_rate = \ |
---|
311 | get_and_set("delete_rate", access_rates, |
---|
312 | 10, int) |
---|
313 | add_input("Users", |
---|
314 | "How many files are deleted per day?", i_delete_rate) |
---|
315 | delete_rate = 1.0 * delete_files_per_day / (24*60*60) |
---|
316 | |
---|
317 | |
---|
318 | # the value is in days |
---|
319 | lease_timers = [ (1, "one refresh per day"), |
---|
320 | (7, "one refresh per week"), |
---|
321 | ] |
---|
322 | lease_timer, i_lease = \ |
---|
323 | get_and_set("lease_timer", lease_timers, |
---|
324 | 7, int) |
---|
325 | add_input("Users", |
---|
326 | "How frequently do clients refresh files or accounts? " |
---|
327 | "(if necessary)", |
---|
328 | i_lease) |
---|
329 | seconds_per_lease = 24*60*60*lease_timer |
---|
330 | |
---|
331 | check_timer_choices = [ (1, "every week"), |
---|
332 | (4, "every month"), |
---|
333 | (8, "every two months"), |
---|
334 | (16, "every four months"), |
---|
335 | ] |
---|
336 | check_timer, i_check_timer = \ |
---|
337 | get_and_set("check_timer", check_timer_choices, 4, int) |
---|
338 | add_input("Users", |
---|
339 | "How frequently should we check on each file?", |
---|
340 | i_check_timer) |
---|
341 | file_check_interval = check_timer * 7 * 24 * 3600 |
---|
342 | |
---|
343 | |
---|
344 | if filled: |
---|
345 | add_output("Users", T.div["Total users: %s" % number(num_users)]) |
---|
346 | add_output("Users", |
---|
347 | T.div["Files per user: %s" % number(files_per_user)]) |
---|
348 | file_size = 1.0 * space_per_user / files_per_user |
---|
349 | add_output("Users", |
---|
350 | T.div["Average file size: ", number(file_size)]) |
---|
351 | total_files = num_users * files_per_user / sharing_ratio |
---|
352 | |
---|
353 | add_output("Grid", |
---|
354 | T.div["Total number of files in grid: ", |
---|
355 | number(total_files)]) |
---|
356 | total_space = num_users * space_per_user / sharing_ratio |
---|
357 | add_output("Grid", |
---|
358 | T.div["Total volume of plaintext in grid: ", |
---|
359 | number(total_space, "B")]) |
---|
360 | |
---|
361 | total_shares = n * total_files |
---|
362 | add_output("Grid", |
---|
363 | T.div["Total shares in grid: ", number(total_shares)]) |
---|
364 | expansion = float(n) / float(k) |
---|
365 | |
---|
366 | total_usage = expansion * total_space |
---|
367 | add_output("Grid", |
---|
368 | T.div["Share data in grid: ", number(total_usage, "B")]) |
---|
369 | |
---|
370 | if n > num_servers: |
---|
371 | # silly configuration, causes Tahoe2 to wrap and put multiple |
---|
372 | # shares on some servers. |
---|
373 | add_output("Servers", |
---|
374 | T.div["non-ideal: more shares than servers" |
---|
375 | " (n=%d, servers=%d)" % (n, num_servers)]) |
---|
376 | # every file has at least one share on every server |
---|
377 | buckets_per_server = total_files |
---|
378 | shares_per_server = total_files * ((1.0 * n) / num_servers) |
---|
379 | else: |
---|
380 | # if nobody is full, then no lease requests will be turned |
---|
381 | # down for lack of space, and no two shares for the same file |
---|
382 | # will share a server. Therefore the chance that any given |
---|
383 | # file has a share on any given server is n/num_servers. |
---|
384 | buckets_per_server = total_files * ((1.0 * n) / num_servers) |
---|
385 | # since each such represented file only puts one share on a |
---|
386 | # server, the total number of shares per server is the same. |
---|
387 | shares_per_server = buckets_per_server |
---|
388 | add_output("Servers", |
---|
389 | T.div["Buckets per server: ", |
---|
390 | number(buckets_per_server)]) |
---|
391 | add_output("Servers", |
---|
392 | T.div["Shares per server: ", |
---|
393 | number(shares_per_server)]) |
---|
394 | |
---|
395 | # how much space is used on the storage servers for the shares? |
---|
396 | # the share data itself |
---|
397 | share_data_per_server = total_usage / num_servers |
---|
398 | add_output("Servers", |
---|
399 | T.div["Share data per server: ", |
---|
400 | number(share_data_per_server, "B")]) |
---|
401 | # this is determined empirically. H=hashsize=32, for a one-segment |
---|
402 | # file and 3-of-10 encoding |
---|
403 | share_validation_per_server = 266 * shares_per_server |
---|
404 | # this could be 423*buckets_per_server, if we moved the URI |
---|
405 | # extension into a separate file, but that would actually consume |
---|
406 | # *more* space (minimum filesize is 4KiB), unless we moved all |
---|
407 | # shares for a given bucket into a single file. |
---|
408 | share_uri_extension_per_server = 423 * shares_per_server |
---|
409 | |
---|
410 | # ownership mode adds per-bucket data |
---|
411 | H = 32 # depends upon the desired security of delete/refresh caps |
---|
412 | # bucket_lease_size is the amount of data needed to keep track of |
---|
413 | # the delete/refresh caps for each bucket. |
---|
414 | bucket_lease_size = 0 |
---|
415 | client_bucket_refresh_rate = 0 |
---|
416 | owner_table_size = 0 |
---|
417 | if ownership_mode in ("B", "C", "D", "E"): |
---|
418 | bucket_lease_size = sharing_ratio * 1.0 * H |
---|
419 | if ownership_mode in ("B", "C"): |
---|
420 | # refreshes per second per client |
---|
421 | client_bucket_refresh_rate = (1.0 * n * files_per_user / |
---|
422 | seconds_per_lease) |
---|
423 | add_output("Users", |
---|
424 | T.div["Client share refresh rate (outbound): ", |
---|
425 | number(client_bucket_refresh_rate, "Hz")]) |
---|
426 | server_bucket_refresh_rate = (client_bucket_refresh_rate * |
---|
427 | num_users / num_servers) |
---|
428 | add_output("Servers", |
---|
429 | T.div["Server share refresh rate (inbound): ", |
---|
430 | number(server_bucket_refresh_rate, "Hz")]) |
---|
431 | if ownership_mode in ("D", "E"): |
---|
432 | # each server must maintain a bidirectional mapping from |
---|
433 | # buckets to owners. One way to implement this would be to |
---|
434 | # put a list of four-byte owner numbers into each bucket, and |
---|
435 | # a list of four-byte share numbers into each owner (although |
---|
436 | # of course we'd really just throw it into a database and let |
---|
437 | # the experts take care of the details). |
---|
438 | owner_table_size = 2*(buckets_per_server * sharing_ratio * 4) |
---|
439 | |
---|
440 | if ownership_mode in ("E",): |
---|
441 | # in this mode, clients must refresh one timer per server |
---|
442 | client_account_refresh_rate = (1.0 * num_servers / |
---|
443 | seconds_per_lease) |
---|
444 | add_output("Users", |
---|
445 | T.div["Client account refresh rate (outbound): ", |
---|
446 | number(client_account_refresh_rate, "Hz")]) |
---|
447 | server_account_refresh_rate = (client_account_refresh_rate * |
---|
448 | num_users / num_servers) |
---|
449 | add_output("Servers", |
---|
450 | T.div["Server account refresh rate (inbound): ", |
---|
451 | number(server_account_refresh_rate, "Hz")]) |
---|
452 | |
---|
453 | # TODO: buckets vs shares here is a bit wonky, but in |
---|
454 | # non-wrapping grids it shouldn't matter |
---|
455 | share_lease_per_server = bucket_lease_size * buckets_per_server |
---|
456 | share_ownertable_per_server = owner_table_size |
---|
457 | |
---|
458 | share_space_per_server = (share_data_per_server + |
---|
459 | share_validation_per_server + |
---|
460 | share_uri_extension_per_server + |
---|
461 | share_lease_per_server + |
---|
462 | share_ownertable_per_server) |
---|
463 | add_output("Servers", |
---|
464 | T.div["Share space per server: ", |
---|
465 | number(share_space_per_server, "B"), |
---|
466 | " (data ", |
---|
467 | number(share_data_per_server, "B"), |
---|
468 | ", validation ", |
---|
469 | number(share_validation_per_server, "B"), |
---|
470 | ", UEB ", |
---|
471 | number(share_uri_extension_per_server, "B"), |
---|
472 | ", lease ", |
---|
473 | number(share_lease_per_server, "B"), |
---|
474 | ", ownertable ", |
---|
475 | number(share_ownertable_per_server, "B"), |
---|
476 | ")", |
---|
477 | ]) |
---|
478 | |
---|
479 | |
---|
480 | # rates |
---|
481 | client_download_share_rate = download_rate * k |
---|
482 | client_download_byte_rate = download_rate * file_size |
---|
483 | add_output("Users", |
---|
484 | T.div["download rate: shares = ", |
---|
485 | number(client_download_share_rate, "Hz"), |
---|
486 | " , bytes = ", |
---|
487 | number(client_download_byte_rate, "Bps"), |
---|
488 | ]) |
---|
489 | total_file_check_rate = 1.0 * total_files / file_check_interval |
---|
490 | client_check_share_rate = total_file_check_rate / num_users |
---|
491 | add_output("Users", |
---|
492 | T.div["file check rate: shares = ", |
---|
493 | number(client_check_share_rate, "Hz"), |
---|
494 | " (interval = %s)" % |
---|
495 | number(1 / client_check_share_rate, "s"), |
---|
496 | ]) |
---|
497 | |
---|
498 | client_upload_share_rate = upload_rate * n |
---|
499 | # TODO: doesn't include overhead |
---|
500 | client_upload_byte_rate = upload_rate * file_size * expansion |
---|
501 | add_output("Users", |
---|
502 | T.div["upload rate: shares = ", |
---|
503 | number(client_upload_share_rate, "Hz"), |
---|
504 | " , bytes = ", |
---|
505 | number(client_upload_byte_rate, "Bps"), |
---|
506 | ]) |
---|
507 | client_delete_share_rate = delete_rate * n |
---|
508 | |
---|
509 | server_inbound_share_rate = (client_upload_share_rate * |
---|
510 | num_users / num_servers) |
---|
511 | server_inbound_byte_rate = (client_upload_byte_rate * |
---|
512 | num_users / num_servers) |
---|
513 | add_output("Servers", |
---|
514 | T.div["upload rate (inbound): shares = ", |
---|
515 | number(server_inbound_share_rate, "Hz"), |
---|
516 | " , bytes = ", |
---|
517 | number(server_inbound_byte_rate, "Bps"), |
---|
518 | ]) |
---|
519 | add_output("Servers", |
---|
520 | T.div["share check rate (inbound): ", |
---|
521 | number(total_file_check_rate * n / num_servers, |
---|
522 | "Hz"), |
---|
523 | ]) |
---|
524 | |
---|
525 | server_share_modify_rate = ((client_upload_share_rate + |
---|
526 | client_delete_share_rate) * |
---|
527 | num_users / num_servers) |
---|
528 | add_output("Servers", |
---|
529 | T.div["share modify rate: shares = ", |
---|
530 | number(server_share_modify_rate, "Hz"), |
---|
531 | ]) |
---|
532 | |
---|
533 | server_outbound_share_rate = (client_download_share_rate * |
---|
534 | num_users / num_servers) |
---|
535 | server_outbound_byte_rate = (client_download_byte_rate * |
---|
536 | num_users / num_servers) |
---|
537 | add_output("Servers", |
---|
538 | T.div["download rate (outbound): shares = ", |
---|
539 | number(server_outbound_share_rate, "Hz"), |
---|
540 | " , bytes = ", |
---|
541 | number(server_outbound_byte_rate, "Bps"), |
---|
542 | ]) |
---|
543 | |
---|
544 | |
---|
545 | total_share_space = num_servers * share_space_per_server |
---|
546 | add_output("Grid", |
---|
547 | T.div["Share space consumed: ", |
---|
548 | number(total_share_space, "B")]) |
---|
549 | add_output("Grid", |
---|
550 | T.div[" %% validation: %.2f%%" % |
---|
551 | (100.0 * share_validation_per_server / |
---|
552 | share_space_per_server)]) |
---|
553 | add_output("Grid", |
---|
554 | T.div[" %% uri-extension: %.2f%%" % |
---|
555 | (100.0 * share_uri_extension_per_server / |
---|
556 | share_space_per_server)]) |
---|
557 | add_output("Grid", |
---|
558 | T.div[" %% lease data: %.2f%%" % |
---|
559 | (100.0 * share_lease_per_server / |
---|
560 | share_space_per_server)]) |
---|
561 | add_output("Grid", |
---|
562 | T.div[" %% owner data: %.2f%%" % |
---|
563 | (100.0 * share_ownertable_per_server / |
---|
564 | share_space_per_server)]) |
---|
565 | add_output("Grid", |
---|
566 | T.div[" %% share data: %.2f%%" % |
---|
567 | (100.0 * share_data_per_server / |
---|
568 | share_space_per_server)]) |
---|
569 | add_output("Grid", |
---|
570 | T.div["file check rate: ", |
---|
571 | number(total_file_check_rate, |
---|
572 | "Hz")]) |
---|
573 | |
---|
574 | total_drives = max(div_ceil(int(total_share_space), |
---|
575 | int(drive_size)), |
---|
576 | num_servers) |
---|
577 | add_output("Drives", |
---|
578 | T.div["Total drives: ", number(total_drives), " drives"]) |
---|
579 | drives_per_server = div_ceil(total_drives, num_servers) |
---|
580 | add_output("Servers", |
---|
581 | T.div["Drives per server: ", drives_per_server]) |
---|
582 | |
---|
583 | # costs |
---|
584 | if drive_size == 3000 * 1e9: |
---|
585 | add_output("Servers", T.div["3000GB drive: $250 each"]) |
---|
586 | drive_cost = 250 |
---|
587 | else: |
---|
588 | add_output("Servers", |
---|
589 | T.div[T.b["unknown cost per drive, assuming $100"]]) |
---|
590 | drive_cost = 100 |
---|
591 | |
---|
592 | if drives_per_server <= 4: |
---|
593 | add_output("Servers", T.div["1U box with <= 4 drives: $1500"]) |
---|
594 | server_cost = 1500 # typical 1U box |
---|
595 | elif drives_per_server <= 12: |
---|
596 | add_output("Servers", T.div["2U box with <= 12 drives: $2500"]) |
---|
597 | server_cost = 2500 # 2U box |
---|
598 | else: |
---|
599 | add_output("Servers", |
---|
600 | T.div[T.b["Note: too many drives per server, " |
---|
601 | "assuming $3000"]]) |
---|
602 | server_cost = 3000 |
---|
603 | |
---|
604 | server_capital_cost = (server_cost + drives_per_server * drive_cost) |
---|
605 | total_server_cost = float(num_servers * server_capital_cost) |
---|
606 | add_output("Servers", T.div["Capital cost per server: $", |
---|
607 | server_capital_cost]) |
---|
608 | add_output("Grid", T.div["Capital cost for all servers: $", |
---|
609 | number(total_server_cost)]) |
---|
610 | # $70/Mbps/mo |
---|
611 | # $44/server/mo power+space |
---|
612 | server_bandwidth = max(server_inbound_byte_rate, |
---|
613 | server_outbound_byte_rate) |
---|
614 | server_bandwidth_mbps = div_ceil(int(server_bandwidth*8), int(1e6)) |
---|
615 | server_monthly_cost = 70*server_bandwidth_mbps + 44 |
---|
616 | add_output("Servers", T.div["Monthly cost per server: $", |
---|
617 | server_monthly_cost]) |
---|
618 | add_output("Users", T.div["Capital cost per user: $", |
---|
619 | number(total_server_cost / num_users)]) |
---|
620 | |
---|
621 | # reliability |
---|
622 | any_drive_failure_rate = total_drives * drive_failure_rate |
---|
623 | any_drive_MTBF = 1 // any_drive_failure_rate # in seconds |
---|
624 | any_drive_MTBF_days = any_drive_MTBF / 86400 |
---|
625 | add_output("Drives", |
---|
626 | T.div["MTBF (any drive): ", |
---|
627 | number(any_drive_MTBF_days), " days"]) |
---|
628 | drive_replacement_monthly_cost = (float(drive_cost) |
---|
629 | * any_drive_failure_rate |
---|
630 | *30*86400) |
---|
631 | add_output("Grid", |
---|
632 | T.div["Monthly cost of replacing drives: $", |
---|
633 | number(drive_replacement_monthly_cost)]) |
---|
634 | |
---|
635 | total_server_monthly_cost = float(num_servers * server_monthly_cost |
---|
636 | + drive_replacement_monthly_cost) |
---|
637 | |
---|
638 | add_output("Grid", T.div["Monthly cost for all servers: $", |
---|
639 | number(total_server_monthly_cost)]) |
---|
640 | add_output("Users", |
---|
641 | T.div["Monthly cost per user: $", |
---|
642 | number(total_server_monthly_cost / num_users)]) |
---|
643 | |
---|
644 | # availability |
---|
645 | file_dBA = self.file_availability(k, n, server_dBA) |
---|
646 | user_files_dBA = self.many_files_availability(file_dBA, |
---|
647 | files_per_user) |
---|
648 | all_files_dBA = self.many_files_availability(file_dBA, total_files) |
---|
649 | add_output("Users", |
---|
650 | T.div["availability of: ", |
---|
651 | "arbitrary file = %d dBA, " % file_dBA, |
---|
652 | "all files of user1 = %d dBA, " % user_files_dBA, |
---|
653 | "all files in grid = %d dBA" % all_files_dBA, |
---|
654 | ], |
---|
655 | ) |
---|
656 | |
---|
657 | time_until_files_lost = (n-k+1) / any_drive_failure_rate |
---|
658 | add_output("Grid", |
---|
659 | T.div["avg time until files are lost: ", |
---|
660 | number(time_until_files_lost, "s"), ", ", |
---|
661 | number(time_until_files_lost/86400, " days"), |
---|
662 | ]) |
---|
663 | |
---|
664 | share_data_loss_rate = any_drive_failure_rate * drive_size |
---|
665 | add_output("Grid", |
---|
666 | T.div["share data loss rate: ", |
---|
667 | number(share_data_loss_rate,"Bps")]) |
---|
668 | |
---|
669 | # the worst-case survival numbers occur when we do a file check |
---|
670 | # and the file is just above the threshold for repair (so we |
---|
671 | # decide to not repair it). The question is then: what is the |
---|
672 | # chance that the file will decay so badly before the next check |
---|
673 | # that we can't recover it? The resulting probability is per |
---|
674 | # check interval. |
---|
675 | # Note that the chances of us getting into this situation are low. |
---|
676 | P_disk_failure_during_interval = (drive_failure_rate * |
---|
677 | file_check_interval) |
---|
678 | disk_failure_dBF = 10*math.log10(P_disk_failure_during_interval) |
---|
679 | disk_failure_dBA = -disk_failure_dBF |
---|
680 | file_survives_dBA = self.file_availability(k, repair_threshold, |
---|
681 | disk_failure_dBA) |
---|
682 | user_files_survives_dBA = self.many_files_availability( \ |
---|
683 | file_survives_dBA, files_per_user) |
---|
684 | all_files_survives_dBA = self.many_files_availability( \ |
---|
685 | file_survives_dBA, total_files) |
---|
686 | add_output("Users", |
---|
687 | T.div["survival of: ", |
---|
688 | "arbitrary file = %d dBA, " % file_survives_dBA, |
---|
689 | "all files of user1 = %d dBA, " % |
---|
690 | user_files_survives_dBA, |
---|
691 | "all files in grid = %d dBA" % |
---|
692 | all_files_survives_dBA, |
---|
693 | " (per worst-case check interval)", |
---|
694 | ]) |
---|
695 | |
---|
696 | |
---|
697 | |
---|
698 | all_sections = [] |
---|
699 | all_sections.append(build_section("Users")) |
---|
700 | all_sections.append(build_section("Servers")) |
---|
701 | all_sections.append(build_section("Drives")) |
---|
702 | if "Grid" in sections: |
---|
703 | all_sections.append(build_section("Grid")) |
---|
704 | |
---|
705 | f = T.form(action=".", method="post", enctype="multipart/form-data") |
---|
706 | |
---|
707 | if filled: |
---|
708 | action = "Recompute" |
---|
709 | else: |
---|
710 | action = "Compute" |
---|
711 | |
---|
712 | f = f[T.input(type="hidden", name="filled", value="true"), |
---|
713 | T.input(type="submit", value=action), |
---|
714 | all_sections, |
---|
715 | ] |
---|
716 | |
---|
717 | try: |
---|
718 | from allmydata import reliability |
---|
719 | # we import this just to test to see if the page is available |
---|
720 | _hush_pyflakes = reliability |
---|
721 | del _hush_pyflakes |
---|
722 | f = [T.div[T.a(href="../reliability")["Reliability Math"]], f] |
---|
723 | except ImportError: |
---|
724 | pass |
---|
725 | |
---|
726 | return f |
---|
727 | |
---|
728 | def file_availability(self, k, n, server_dBA): |
---|
729 | """ |
---|
730 | The full formula for the availability of a specific file is:: |
---|
731 | |
---|
732 | 1 - sum([choose(N,i) * p**i * (1-p)**(N-i)] for i in range(k)]) |
---|
733 | |
---|
734 | Where choose(N,i) = N! / ( i! * (N-i)! ) . Note that each term of |
---|
735 | this summation is the probability that there are exactly 'i' servers |
---|
736 | available, and what we're doing is adding up the cases where i is too |
---|
737 | low. |
---|
738 | |
---|
739 | This is a nuisance to calculate at all accurately, especially once N |
---|
740 | gets large, and when p is close to unity. So we make an engineering |
---|
741 | approximation: if (1-p) is very small, then each [i] term is much |
---|
742 | larger than the [i-1] term, and the sum is dominated by the i=k-1 |
---|
743 | term. This only works for (1-p) < 10%, and when the choose() function |
---|
744 | doesn't rise fast enough to compensate. For high-expansion encodings |
---|
745 | (3-of-10, 25-of-100), the choose() function is rising at the same |
---|
746 | time as the (1-p)**(N-i) term, so that's not an issue. For |
---|
747 | low-expansion encodings (7-of-10, 75-of-100) the two values are |
---|
748 | moving in opposite directions, so more care must be taken. |
---|
749 | |
---|
750 | Note that the p**i term has only a minor effect as long as (1-p)*N is |
---|
751 | small, and even then the effect is attenuated by the 1-p term. |
---|
752 | """ |
---|
753 | |
---|
754 | assert server_dBA > 9 # >=90% availability to use the approximation |
---|
755 | factor = binomial(n, k-1) |
---|
756 | factor_dBA = 10 * math.log10(factor) |
---|
757 | exponent = n - k + 1 |
---|
758 | file_dBA = server_dBA * exponent - factor_dBA |
---|
759 | return file_dBA |
---|
760 | |
---|
761 | def many_files_availability(self, file_dBA, num_files): |
---|
762 | """The probability that 'num_files' independent bernoulli trials will |
---|
763 | succeed (i.e. we can recover all files in the grid at any given |
---|
764 | moment) is p**num_files . Since p is close to unity, we express in p |
---|
765 | in dBA instead, so we can get useful precision on q (=1-p), and then |
---|
766 | the formula becomes:: |
---|
767 | |
---|
768 | P_some_files_unavailable = 1 - (1 - q)**num_files |
---|
769 | |
---|
770 | That (1-q)**n expands with the usual binomial sequence, 1 - nq + |
---|
771 | Xq**2 ... + Xq**n . We use the same approximation as before, since we |
---|
772 | know q is close to zero, and we get to ignore all the terms past -nq. |
---|
773 | """ |
---|
774 | |
---|
775 | many_files_dBA = file_dBA - 10 * math.log10(num_files) |
---|
776 | return many_files_dBA |
---|