1 | #include "fe25519.h" |
---|
2 | #include "sc25519.h" |
---|
3 | #include "ge25519.h" |
---|
4 | |
---|
5 | /* |
---|
6 | * Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2 |
---|
7 | * with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555 |
---|
8 | * Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960); |
---|
9 | */ |
---|
10 | |
---|
11 | /* d */ |
---|
12 | static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00, |
---|
13 | 0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}}; |
---|
14 | /* 2*d */ |
---|
15 | static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00, |
---|
16 | 0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}}; |
---|
17 | /* sqrt(-1) */ |
---|
18 | static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F, |
---|
19 | 0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}}; |
---|
20 | |
---|
21 | #define ge25519_p3 ge25519 |
---|
22 | |
---|
23 | typedef struct |
---|
24 | { |
---|
25 | fe25519 x; |
---|
26 | fe25519 z; |
---|
27 | fe25519 y; |
---|
28 | fe25519 t; |
---|
29 | } ge25519_p1p1; |
---|
30 | |
---|
31 | typedef struct |
---|
32 | { |
---|
33 | fe25519 x; |
---|
34 | fe25519 y; |
---|
35 | fe25519 z; |
---|
36 | } ge25519_p2; |
---|
37 | |
---|
38 | typedef struct |
---|
39 | { |
---|
40 | fe25519 x; |
---|
41 | fe25519 y; |
---|
42 | } ge25519_aff; |
---|
43 | |
---|
44 | |
---|
45 | /* Packed coordinates of the base point */ |
---|
46 | const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69, |
---|
47 | 0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}}, |
---|
48 | {{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, |
---|
49 | 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}}, |
---|
50 | {{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
---|
51 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, |
---|
52 | {{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20, |
---|
53 | 0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}}; |
---|
54 | |
---|
55 | /* Multiples of the base point in affine representation */ |
---|
56 | static const ge25519_aff ge25519_base_multiples_affine[425] = { |
---|
57 | #include "ge25519_base.data" |
---|
58 | }; |
---|
59 | |
---|
60 | static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p) |
---|
61 | { |
---|
62 | fe25519_mul(&r->x, &p->x, &p->t); |
---|
63 | fe25519_mul(&r->y, &p->y, &p->z); |
---|
64 | fe25519_mul(&r->z, &p->z, &p->t); |
---|
65 | } |
---|
66 | |
---|
67 | static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p) |
---|
68 | { |
---|
69 | p1p1_to_p2((ge25519_p2 *)r, p); |
---|
70 | fe25519_mul(&r->t, &p->x, &p->y); |
---|
71 | } |
---|
72 | |
---|
73 | static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q) |
---|
74 | { |
---|
75 | fe25519 a,b,t1,t2,c,d,e,f,g,h,qt; |
---|
76 | fe25519_mul(&qt, &q->x, &q->y); |
---|
77 | fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */ |
---|
78 | fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */ |
---|
79 | fe25519_sub(&t1, &q->y, &q->x); |
---|
80 | fe25519_add(&t2, &q->y, &q->x); |
---|
81 | fe25519_mul(&a, &a, &t1); |
---|
82 | fe25519_mul(&b, &b, &t2); |
---|
83 | fe25519_sub(&e, &b, &a); /* E = B-A */ |
---|
84 | fe25519_add(&h, &b, &a); /* H = B+A */ |
---|
85 | fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */ |
---|
86 | fe25519_mul(&c, &c, &ge25519_ec2d); |
---|
87 | fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */ |
---|
88 | fe25519_sub(&f, &d, &c); /* F = D-C */ |
---|
89 | fe25519_add(&g, &d, &c); /* G = D+C */ |
---|
90 | fe25519_mul(&r->x, &e, &f); |
---|
91 | fe25519_mul(&r->y, &h, &g); |
---|
92 | fe25519_mul(&r->z, &g, &f); |
---|
93 | fe25519_mul(&r->t, &e, &h); |
---|
94 | } |
---|
95 | |
---|
96 | static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q) |
---|
97 | { |
---|
98 | fe25519 a, b, c, d, t; |
---|
99 | |
---|
100 | fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */ |
---|
101 | fe25519_sub(&t, &q->y, &q->x); |
---|
102 | fe25519_mul(&a, &a, &t); |
---|
103 | fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */ |
---|
104 | fe25519_add(&t, &q->x, &q->y); |
---|
105 | fe25519_mul(&b, &b, &t); |
---|
106 | fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */ |
---|
107 | fe25519_mul(&c, &c, &ge25519_ec2d); |
---|
108 | fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */ |
---|
109 | fe25519_add(&d, &d, &d); |
---|
110 | fe25519_sub(&r->x, &b, &a); /* E = B-A */ |
---|
111 | fe25519_sub(&r->t, &d, &c); /* F = D-C */ |
---|
112 | fe25519_add(&r->z, &d, &c); /* G = D+C */ |
---|
113 | fe25519_add(&r->y, &b, &a); /* H = B+A */ |
---|
114 | } |
---|
115 | |
---|
116 | /* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */ |
---|
117 | static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p) |
---|
118 | { |
---|
119 | fe25519 a,b,c,d; |
---|
120 | fe25519_square(&a, &p->x); |
---|
121 | fe25519_square(&b, &p->y); |
---|
122 | fe25519_square(&c, &p->z); |
---|
123 | fe25519_add(&c, &c, &c); |
---|
124 | fe25519_neg(&d, &a); |
---|
125 | |
---|
126 | fe25519_add(&r->x, &p->x, &p->y); |
---|
127 | fe25519_square(&r->x, &r->x); |
---|
128 | fe25519_sub(&r->x, &r->x, &a); |
---|
129 | fe25519_sub(&r->x, &r->x, &b); |
---|
130 | fe25519_add(&r->z, &d, &b); |
---|
131 | fe25519_sub(&r->t, &r->z, &c); |
---|
132 | fe25519_sub(&r->y, &d, &b); |
---|
133 | } |
---|
134 | |
---|
135 | /* Constant-time version of: if(b) r = p */ |
---|
136 | static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b) |
---|
137 | { |
---|
138 | fe25519_cmov(&r->x, &p->x, b); |
---|
139 | fe25519_cmov(&r->y, &p->y, b); |
---|
140 | } |
---|
141 | |
---|
142 | static unsigned char equal(signed char b,signed char c) |
---|
143 | { |
---|
144 | unsigned char ub = b; |
---|
145 | unsigned char uc = c; |
---|
146 | unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */ |
---|
147 | crypto_uint32 y = x; /* 0: yes; 1..255: no */ |
---|
148 | y -= 1; /* 4294967295: yes; 0..254: no */ |
---|
149 | y >>= 31; /* 1: yes; 0: no */ |
---|
150 | return y; |
---|
151 | } |
---|
152 | |
---|
153 | static unsigned char negative(signed char b) |
---|
154 | { |
---|
155 | unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */ |
---|
156 | x >>= 63; /* 1: yes; 0: no */ |
---|
157 | return x; |
---|
158 | } |
---|
159 | |
---|
160 | static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b) |
---|
161 | { |
---|
162 | /* constant time */ |
---|
163 | fe25519 v; |
---|
164 | *t = ge25519_base_multiples_affine[5*pos+0]; |
---|
165 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1)); |
---|
166 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2)); |
---|
167 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3)); |
---|
168 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4)); |
---|
169 | fe25519_neg(&v, &t->x); |
---|
170 | fe25519_cmov(&t->x, &v, negative(b)); |
---|
171 | } |
---|
172 | |
---|
173 | static void setneutral(ge25519 *r) |
---|
174 | { |
---|
175 | fe25519_setzero(&r->x); |
---|
176 | fe25519_setone(&r->y); |
---|
177 | fe25519_setone(&r->z); |
---|
178 | fe25519_setzero(&r->t); |
---|
179 | } |
---|
180 | |
---|
181 | /* ******************************************************************** |
---|
182 | * EXPORTED FUNCTIONS |
---|
183 | ******************************************************************** */ |
---|
184 | |
---|
185 | /* return 0 on success, -1 otherwise */ |
---|
186 | int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32]) |
---|
187 | { |
---|
188 | unsigned char par; |
---|
189 | fe25519 t, chk, num, den, den2, den4, den6; |
---|
190 | fe25519_setone(&r->z); |
---|
191 | par = p[31] >> 7; |
---|
192 | fe25519_unpack(&r->y, p); |
---|
193 | fe25519_square(&num, &r->y); /* x = y^2 */ |
---|
194 | fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */ |
---|
195 | fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */ |
---|
196 | fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */ |
---|
197 | |
---|
198 | /* Computation of sqrt(num/den) */ |
---|
199 | /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */ |
---|
200 | fe25519_square(&den2, &den); |
---|
201 | fe25519_square(&den4, &den2); |
---|
202 | fe25519_mul(&den6, &den4, &den2); |
---|
203 | fe25519_mul(&t, &den6, &num); |
---|
204 | fe25519_mul(&t, &t, &den); |
---|
205 | |
---|
206 | fe25519_pow2523(&t, &t); |
---|
207 | /* 2. computation of r->x = t * num * den^3 */ |
---|
208 | fe25519_mul(&t, &t, &num); |
---|
209 | fe25519_mul(&t, &t, &den); |
---|
210 | fe25519_mul(&t, &t, &den); |
---|
211 | fe25519_mul(&r->x, &t, &den); |
---|
212 | |
---|
213 | /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */ |
---|
214 | fe25519_square(&chk, &r->x); |
---|
215 | fe25519_mul(&chk, &chk, &den); |
---|
216 | if (!fe25519_iseq_vartime(&chk, &num)) |
---|
217 | fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1); |
---|
218 | |
---|
219 | /* 4. Now we have one of the two square roots, except if input was not a square */ |
---|
220 | fe25519_square(&chk, &r->x); |
---|
221 | fe25519_mul(&chk, &chk, &den); |
---|
222 | if (!fe25519_iseq_vartime(&chk, &num)) |
---|
223 | return -1; |
---|
224 | |
---|
225 | /* 5. Choose the desired square root according to parity: */ |
---|
226 | if(fe25519_getparity(&r->x) != (1-par)) |
---|
227 | fe25519_neg(&r->x, &r->x); |
---|
228 | |
---|
229 | fe25519_mul(&r->t, &r->x, &r->y); |
---|
230 | return 0; |
---|
231 | } |
---|
232 | |
---|
233 | void ge25519_pack(unsigned char r[32], const ge25519_p3 *p) |
---|
234 | { |
---|
235 | fe25519 tx, ty, zi; |
---|
236 | fe25519_invert(&zi, &p->z); |
---|
237 | fe25519_mul(&tx, &p->x, &zi); |
---|
238 | fe25519_mul(&ty, &p->y, &zi); |
---|
239 | fe25519_pack(r, &ty); |
---|
240 | r[31] ^= fe25519_getparity(&tx) << 7; |
---|
241 | } |
---|
242 | |
---|
243 | int ge25519_isneutral_vartime(const ge25519_p3 *p) |
---|
244 | { |
---|
245 | int ret = 1; |
---|
246 | if(!fe25519_iszero(&p->x)) ret = 0; |
---|
247 | if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0; |
---|
248 | return ret; |
---|
249 | } |
---|
250 | |
---|
251 | /* computes [s1]p1 + [s2]p2 */ |
---|
252 | void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2) |
---|
253 | { |
---|
254 | ge25519_p1p1 tp1p1; |
---|
255 | ge25519_p3 pre[16]; |
---|
256 | unsigned char b[127]; |
---|
257 | int i; |
---|
258 | |
---|
259 | /* precomputation s2 s1 */ |
---|
260 | setneutral(pre); /* 00 00 */ |
---|
261 | pre[1] = *p1; /* 00 01 */ |
---|
262 | dbl_p1p1(&tp1p1,(ge25519_p2 *)p1); p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */ |
---|
263 | add_p1p1(&tp1p1,&pre[1], &pre[2]); p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */ |
---|
264 | pre[4] = *p2; /* 01 00 */ |
---|
265 | add_p1p1(&tp1p1,&pre[1], &pre[4]); p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */ |
---|
266 | add_p1p1(&tp1p1,&pre[2], &pre[4]); p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */ |
---|
267 | add_p1p1(&tp1p1,&pre[3], &pre[4]); p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */ |
---|
268 | dbl_p1p1(&tp1p1,(ge25519_p2 *)p2); p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */ |
---|
269 | add_p1p1(&tp1p1,&pre[1], &pre[8]); p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */ |
---|
270 | dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */ |
---|
271 | add_p1p1(&tp1p1,&pre[3], &pre[8]); p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */ |
---|
272 | add_p1p1(&tp1p1,&pre[4], &pre[8]); p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */ |
---|
273 | add_p1p1(&tp1p1,&pre[1],&pre[12]); p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */ |
---|
274 | add_p1p1(&tp1p1,&pre[2],&pre[12]); p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */ |
---|
275 | add_p1p1(&tp1p1,&pre[3],&pre[12]); p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */ |
---|
276 | |
---|
277 | sc25519_2interleave2(b,s1,s2); |
---|
278 | |
---|
279 | /* scalar multiplication */ |
---|
280 | *r = pre[b[126]]; |
---|
281 | for(i=125;i>=0;i--) |
---|
282 | { |
---|
283 | dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
---|
284 | p1p1_to_p2((ge25519_p2 *) r, &tp1p1); |
---|
285 | dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
---|
286 | if(b[i]!=0) |
---|
287 | { |
---|
288 | p1p1_to_p3(r, &tp1p1); |
---|
289 | add_p1p1(&tp1p1, r, &pre[b[i]]); |
---|
290 | } |
---|
291 | if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1); |
---|
292 | else p1p1_to_p3(r, &tp1p1); |
---|
293 | } |
---|
294 | } |
---|
295 | |
---|
296 | void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s) |
---|
297 | { |
---|
298 | signed char b[85]; |
---|
299 | int i; |
---|
300 | ge25519_aff t; |
---|
301 | sc25519_window3(b,s); |
---|
302 | |
---|
303 | choose_t((ge25519_aff *)r, 0, b[0]); |
---|
304 | fe25519_setone(&r->z); |
---|
305 | fe25519_mul(&r->t, &r->x, &r->y); |
---|
306 | for(i=1;i<85;i++) |
---|
307 | { |
---|
308 | choose_t(&t, (unsigned long long) i, b[i]); |
---|
309 | ge25519_mixadd2(r, &t); |
---|
310 | } |
---|
311 | } |
---|