1 | // nbtheory.h - written and placed in the public domain by Wei Dai |
---|
2 | |
---|
3 | //! \file nbtheory.h |
---|
4 | //! \brief Classes and functions for number theoretic operations |
---|
5 | |
---|
6 | #ifndef CRYPTOPP_NBTHEORY_H |
---|
7 | #define CRYPTOPP_NBTHEORY_H |
---|
8 | |
---|
9 | #include "cryptlib.h" |
---|
10 | #include "integer.h" |
---|
11 | #include "algparam.h" |
---|
12 | |
---|
13 | NAMESPACE_BEGIN(CryptoPP) |
---|
14 | |
---|
15 | // obtain pointer to small prime table and get its size |
---|
16 | CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size); |
---|
17 | |
---|
18 | // ************ primality testing **************** |
---|
19 | |
---|
20 | //! \brief Generates a provable prime |
---|
21 | //! \param rng a RandomNumberGenerator to produce keying material |
---|
22 | //! \param bits the number of bits in the prime number |
---|
23 | //! \returns Integer() meeting Maurer's tests for primality |
---|
24 | CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); |
---|
25 | |
---|
26 | //! \brief Generates a provable prime |
---|
27 | //! \param rng a RandomNumberGenerator to produce keying material |
---|
28 | //! \param bits the number of bits in the prime number |
---|
29 | //! \returns Integer() meeting Mihailescu's tests for primality |
---|
30 | //! \details Mihailescu's methods performs a search using algorithmic progressions. |
---|
31 | CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); |
---|
32 | |
---|
33 | //! \brief Tests whether a number is a small prime |
---|
34 | //! \param p a candidate prime to test |
---|
35 | //! \returns true if p is a small prime, false otherwise |
---|
36 | //! \details Internally, the library maintains a table fo the first 32719 prime numbers |
---|
37 | //! in sorted order. IsSmallPrime() searches the table and returns true if p is |
---|
38 | //! in the table. |
---|
39 | CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p); |
---|
40 | |
---|
41 | //! |
---|
42 | //! \returns true if p is divisible by some prime less than bound. |
---|
43 | //! \details TrialDivision() true if p is divisible by some prime less than bound. bound not be |
---|
44 | //! greater than the largest entry in the prime table, which is 32719. |
---|
45 | CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound); |
---|
46 | |
---|
47 | // returns true if p is NOT divisible by small primes |
---|
48 | CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p); |
---|
49 | |
---|
50 | // These is no reason to use these two, use the ones below instead |
---|
51 | CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b); |
---|
52 | CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n); |
---|
53 | |
---|
54 | CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b); |
---|
55 | CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n); |
---|
56 | |
---|
57 | // Rabin-Miller primality test, i.e. repeating the strong probable prime test |
---|
58 | // for several rounds with random bases |
---|
59 | CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds); |
---|
60 | |
---|
61 | //! \brief Verifies a prime number |
---|
62 | //! \param p a candidate prime to test |
---|
63 | //! \returns true if p is a probable prime, false otherwise |
---|
64 | //! \details IsPrime() is suitable for testing candidate primes when creating them. Internally, |
---|
65 | //! IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime(). |
---|
66 | CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p); |
---|
67 | |
---|
68 | //! \brief Verifies a prime number |
---|
69 | //! \param rng a RandomNumberGenerator for randomized testing |
---|
70 | //! \param p a candidate prime to test |
---|
71 | //! \param level the level of thoroughness of testing |
---|
72 | //! \returns true if p is a strong probable prime, false otherwise |
---|
73 | //! \details VerifyPrime() is suitable for testing candidate primes created by others. Internally, |
---|
74 | //! VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candiate passes and |
---|
75 | //! level is greater than 1, then 10 round RabinMillerTest() primality testing is performed. |
---|
76 | CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); |
---|
77 | |
---|
78 | //! \class PrimeSelector |
---|
79 | //! \brief Application callback to signal suitability of a cabdidate prime |
---|
80 | class CRYPTOPP_DLL PrimeSelector |
---|
81 | { |
---|
82 | public: |
---|
83 | const PrimeSelector *GetSelectorPointer() const {return this;} |
---|
84 | virtual bool IsAcceptable(const Integer &candidate) const =0; |
---|
85 | }; |
---|
86 | |
---|
87 | //! \brief Finds a random prime of special form |
---|
88 | //! \param p an Integer reference to receive the prime |
---|
89 | //! \param max the maximum value |
---|
90 | //! \param equiv the equivalence class based on the parameter mod |
---|
91 | //! \param mod the modulus used to reduce the equivalence class |
---|
92 | //! \param pSelector pointer to a PrimeSelector function for the application to signal suitability |
---|
93 | //! \returns true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime() |
---|
94 | //! returns false, then no such prime exists and the value of p is undefined |
---|
95 | //! \details FirstPrime() uses a fast sieve to find the first probable prime |
---|
96 | //! in <tt>{x | p<=x<=max and x%mod==equiv}</tt> |
---|
97 | CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); |
---|
98 | |
---|
99 | CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max); |
---|
100 | |
---|
101 | CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); |
---|
102 | |
---|
103 | // ********** other number theoretic functions ************ |
---|
104 | |
---|
105 | inline Integer GCD(const Integer &a, const Integer &b) |
---|
106 | {return Integer::Gcd(a,b);} |
---|
107 | inline bool RelativelyPrime(const Integer &a, const Integer &b) |
---|
108 | {return Integer::Gcd(a,b) == Integer::One();} |
---|
109 | inline Integer LCM(const Integer &a, const Integer &b) |
---|
110 | {return a/Integer::Gcd(a,b)*b;} |
---|
111 | inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) |
---|
112 | {return a.InverseMod(b);} |
---|
113 | |
---|
114 | // use Chinese Remainder Theorem to calculate x given x mod p and x mod q, and u = inverse of p mod q |
---|
115 | CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); |
---|
116 | |
---|
117 | // if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise |
---|
118 | // check a number theory book for what Jacobi symbol means when b is not prime |
---|
119 | CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b); |
---|
120 | |
---|
121 | // calculates the Lucas function V_e(p, 1) mod n |
---|
122 | CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n); |
---|
123 | // calculates x such that m==Lucas(e, x, p*q), p q primes, u=inverse of p mod q |
---|
124 | CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); |
---|
125 | |
---|
126 | inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m) |
---|
127 | {return a_exp_b_mod_c(a, e, m);} |
---|
128 | // returns x such that x*x%p == a, p prime |
---|
129 | CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p); |
---|
130 | // returns x such that a==ModularExponentiation(x, e, p*q), p q primes, |
---|
131 | // and e relatively prime to (p-1)*(q-1) |
---|
132 | // dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1)) |
---|
133 | // and u=inverse of p mod q |
---|
134 | CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); |
---|
135 | |
---|
136 | // find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime |
---|
137 | // returns true if solutions exist |
---|
138 | CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); |
---|
139 | |
---|
140 | // returns log base 2 of estimated number of operations to calculate discrete log or factor a number |
---|
141 | CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength); |
---|
142 | CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength); |
---|
143 | |
---|
144 | // ******************************************************** |
---|
145 | |
---|
146 | //! generator of prime numbers of special forms |
---|
147 | class CRYPTOPP_DLL PrimeAndGenerator |
---|
148 | { |
---|
149 | public: |
---|
150 | PrimeAndGenerator() {} |
---|
151 | // generate a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is also prime |
---|
152 | // Precondition: pbits > 5 |
---|
153 | // warning: this is slow, because primes of this form are harder to find |
---|
154 | PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits) |
---|
155 | {Generate(delta, rng, pbits, pbits-1);} |
---|
156 | // generate a random prime p of the form 2*r*q+delta, where q is also prime |
---|
157 | // Precondition: qbits > 4 && pbits > qbits |
---|
158 | PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits) |
---|
159 | {Generate(delta, rng, pbits, qbits);} |
---|
160 | |
---|
161 | void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits); |
---|
162 | |
---|
163 | const Integer& Prime() const {return p;} |
---|
164 | const Integer& SubPrime() const {return q;} |
---|
165 | const Integer& Generator() const {return g;} |
---|
166 | |
---|
167 | private: |
---|
168 | Integer p, q, g; |
---|
169 | }; |
---|
170 | |
---|
171 | NAMESPACE_END |
---|
172 | |
---|
173 | #endif |
---|