// misc.h - written and placed in the public domain by Wei Dai //! \file misc.h //! \brief Utility functions for the Crypto++ library. #ifndef CRYPTOPP_MISC_H #define CRYPTOPP_MISC_H #include "config.h" #if !CRYPTOPP_DOXYGEN_PROCESSING #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4146 4514) # if (CRYPTOPP_MSC_VERSION >= 1400) # pragma warning(disable: 6326) # endif #endif #include "cryptlib.h" #include "stdcpp.h" #include "smartptr.h" #ifdef _MSC_VER #if _MSC_VER >= 1400 // VC2005 workaround: disable declarations that conflict with winnt.h #define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1 #define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2 #define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3 #define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4 #include #undef _interlockedbittestandset #undef _interlockedbittestandreset #undef _interlockedbittestandset64 #undef _interlockedbittestandreset64 #define CRYPTOPP_FAST_ROTATE(x) 1 #elif _MSC_VER >= 1300 #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64) #else #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) #endif #elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \ (defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM))) #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) #elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions #define CRYPTOPP_FAST_ROTATE(x) 1 #else #define CRYPTOPP_FAST_ROTATE(x) 0 #endif #ifdef __BORLANDC__ #include #include #endif #if defined(__GNUC__) && defined(__linux__) #define CRYPTOPP_BYTESWAP_AVAILABLE #include #endif #if defined(__GNUC__) && defined(__BMI__) # include # if defined(__clang__) # ifndef _tzcnt_u32 # define _tzcnt_u32(x) __tzcnt_u32(x) # endif # ifndef _blsr_u32 # define _blsr_u32(x) __blsr_u32(x) # endif # ifdef __x86_64__ # ifndef _tzcnt_u64 # define _tzcnt_u64(x) __tzcnt_u64(x) # endif # ifndef _blsr_u64 # define _blsr_u64(x) __blsr_u64(x) # endif # endif // x86_64 # endif // Clang #endif // GNUC and BMI #endif // CRYPTOPP_DOXYGEN_PROCESSING #if CRYPTOPP_DOXYGEN_PROCESSING //! \brief The maximum value of a machine word //! \details SIZE_MAX provides the maximum value of a machine word. The value is //! \p 0xffffffff on 32-bit machines, and \p 0xffffffffffffffff on 64-bit machines. //! Internally, SIZE_MAX is defined as __SIZE_MAX__ if __SIZE_MAX__ is defined. If not //! defined, then SIZE_T_MAX is tried. If neither __SIZE_MAX__ nor SIZE_T_MAX is //! is defined, the library uses std::numeric_limits::max(). The library //! prefers __SIZE_MAX__ because its a constexpr that is optimized well //! by all compilers. std::numeric_limits::max() is \a not a constexpr, //! and it is \a not always optimized well. # define SIZE_MAX ... #else // Its amazing portability problems still plague this simple concept in 2015. // http://stackoverflow.com/questions/30472731/which-c-standard-header-defines-size-max // Avoid NOMINMAX macro on Windows. http://support.microsoft.com/en-us/kb/143208 #ifndef SIZE_MAX # if defined(__SIZE_MAX__) && (__SIZE_MAX__ > 0) # define SIZE_MAX __SIZE_MAX__ # elif defined(SIZE_T_MAX) && (SIZE_T_MAX > 0) # define SIZE_MAX SIZE_T_MAX # else # define SIZE_MAX ((std::numeric_limits::max)()) # endif #endif #endif // CRYPTOPP_DOXYGEN_PROCESSING NAMESPACE_BEGIN(CryptoPP) // Forward declaration for IntToString specialization class Integer; // ************** compile-time assertion *************** #if CRYPTOPP_DOXYGEN_PROCESSING //! \brief Compile time assertion //! \param expr the expression to evaluate //! \details Asserts the expression expr though a dummy struct. #define CRYPTOPP_COMPILE_ASSERT(expr) { ... } #else // CRYPTOPP_DOXYGEN_PROCESSING template struct CompileAssert { static char dummy[2*b-1]; }; //! \endif #define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__) #if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS) #define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) #else # if defined(__GNUC__) # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \ static CompileAssert<(assertion)> \ CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) __attribute__ ((unused)) # else # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \ static CompileAssert<(assertion)> \ CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) # endif // __GNUC__ #endif #define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y) #define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y #endif // CRYPTOPP_DOXYGEN_PROCESSING // ************** count elements in an array *************** #if CRYPTOPP_DOXYGEN_PROCESSING //! \brief Counts elements in an array //! \param arr an array of elements //! \details COUNTOF counts elements in an array. On Windows COUNTOF(x) is defined //! to _countof(x) to ensure correct results for pointers. //! \note COUNTOF does not produce correct results with pointers, and an array must be used. //! sizeof(x)/sizeof(x[0]) suffers the same problem. The risk is eliminated by using //! _countof(x) on Windows. Windows will provide the immunity for other platforms. # define COUNTOF(arr) #else // VS2005 added _countof #ifndef COUNTOF # if defined(_MSC_VER) && (_MSC_VER >= 1400) # define COUNTOF(x) _countof(x) # else # define COUNTOF(x) (sizeof(x)/sizeof(x[0])) # endif #endif // COUNTOF #endif // CRYPTOPP_DOXYGEN_PROCESSING // ************** misc classes *************** //! \brief An Empty class //! \details The Empty class can be used as a template parameter BASE when no base class exists. class CRYPTOPP_DLL Empty { }; #if !CRYPTOPP_DOXYGEN_PROCESSING template class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2 { }; template class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3 { }; #endif // CRYPTOPP_DOXYGEN_PROCESSING //! \class ObjectHolder //! \tparam the class or type //! \brief Uses encapsulation to hide an object in derived classes //! \details The object T is declared as protected. template class ObjectHolder { protected: T m_object; }; //! \class NotCopyable //! \brief Ensures an object is not copyable //! \details NotCopyable ensures an object is not copyable by making the //! copy constructor and assignment operator private. Deleters are not //! used under C++11. //! \sa Clonable class class NotCopyable { public: NotCopyable() {} private: NotCopyable(const NotCopyable &); void operator=(const NotCopyable &); }; //! \class NewObject //! \brief An object factory function //! \details NewObject overloads operator()(). template struct NewObject { T* operator()() const {return new T;} }; #if CRYPTOPP_DOXYGEN_PROCESSING //! \brief A memory barrier //! \details MEMORY_BARRIER attempts to ensure reads and writes are completed //! in the absence of a language synchronization point. It is used by the //! Singleton class if the compiler supports it. The barrier is provided at the //! customary places in a double-checked initialization. //! \details Internally, MEMORY_BARRIER uses std::atomic_thread_fence if //! C++11 atomics are available. Otherwise, intrinsic(_ReadWriteBarrier), //! _ReadWriteBarrier() or __asm__("" ::: "memory") is used. #define MEMORY_BARRIER ... #else #if defined(CRYPTOPP_CXX11_ATOMICS) # define MEMORY_BARRIER() std::atomic_thread_fence(std::memory_order_acq_rel) #elif (_MSC_VER >= 1400) # pragma intrinsic(_ReadWriteBarrier) # define MEMORY_BARRIER() _ReadWriteBarrier() #elif defined(__INTEL_COMPILER) # define MEMORY_BARRIER() __memory_barrier() #elif defined(__GNUC__) || defined(__clang__) # define MEMORY_BARRIER() __asm__ __volatile__ ("" ::: "memory") #else # define MEMORY_BARRIER() #endif #endif // CRYPTOPP_DOXYGEN_PROCESSING //! \brief Restricts the instantiation of a class to one static object without locks //! \tparam T the class or type //! \tparam F the object factory for T //! \tparam instance the initiali instance count //! \details This class safely initializes a static object in a multithreaded environment. For C++03 //! and below it will do so without using locks for portability. If two threads call Ref() at the same //! time, they may get back different references, and one object may end up being memory leaked. This //! is by design and it avoids a subltle initialization problem ina multithreaded environment with thread //! local storage on early Windows platforms, like Windows XP and Windows 2003. //! \details For C++11 and above, a standard double-checked locking pattern with thread fences //! are used. The locks and fences are standard and do not hinder portability. //! \sa Double-Checked //! Locking is Fixed In C++11 template , int instance=0> class Singleton { public: Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {} // prevent this function from being inlined CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const; private: F m_objectFactory; }; //! \brief Return a reference to the inner Singleton object //! \details Ref() is used to create the object using the object factory. The //! object is only created once with the limitations discussed in the class documentation. //! \sa Double-Checked Locking is Fixed In C++11 #if defined(CRYPTOPP_CXX11_ATOMICS) && defined(CRYPTOPP_CXX11_SYNCHRONIZATION) template const T & Singleton::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const { static std::mutex s_mutex; static std::atomic s_pObject; T *p = s_pObject.load(std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_acquire); if (p) return *p; std::lock_guard lock(s_mutex); p = s_pObject.load(std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_acquire); if (p) return *p; T *newObject = m_objectFactory(); s_pObject.store(newObject, std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_release); return *newObject; } #else template const T & Singleton::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const { static volatile simple_ptr s_pObject; T *p = s_pObject.m_p; MEMORY_BARRIER(); if (p) return *p; T *newObject = m_objectFactory(); p = s_pObject.m_p; MEMORY_BARRIER(); if (p) { delete newObject; return *p; } s_pObject.m_p = newObject; MEMORY_BARRIER(); return *newObject; } #endif // ************** misc functions *************** #if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) || defined(CRYPTOPP_WANT_SECURE_LIB) //! \brief Bounds checking replacement for memcpy() //! \param dest pointer to the desination memory block //! \param sizeInBytes the size of the desination memory block, in bytes //! \param src pointer to the source memory block //! \param count the size of the source memory block, in bytes //! \throws InvalidArgument //! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially //! unsafe functions like memcpy(), strcpy() and memmove(). However, //! not all standard libraries provides them, like Glibc. The library's //! memcpy_s() is a near-drop in replacement. Its only a near-replacement //! because the library's version throws an InvalidArgument on a bounds violation. //! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__. //! If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library //! makes memcpy_s() and memmove_s() available. The library will also optionally //! make the symbols available if CRYPTOPP_WANT_SECURE_LIB is defined. //! CRYPTOPP_WANT_SECURE_LIB is in config.h, but it is disabled by default. //! \details memcpy_s() will assert the pointers src and dest are not NULL //! in debug builds. Passing NULL for either pointer is undefined behavior. inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count) { // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55 // Pointers must be valid; otherwise undefined behavior CRYPTOPP_ASSERT(dest != NULL); CRYPTOPP_ASSERT(src != NULL); // Destination buffer must be large enough to satsify request CRYPTOPP_ASSERT(sizeInBytes >= count); if (count > sizeInBytes) throw InvalidArgument("memcpy_s: buffer overflow"); #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4996) # if (CRYPTOPP_MSC_VERSION >= 1400) # pragma warning(disable: 6386) # endif #endif memcpy(dest, src, count); #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif } //! \brief Bounds checking replacement for memmove() //! \param dest pointer to the desination memory block //! \param sizeInBytes the size of the desination memory block, in bytes //! \param src pointer to the source memory block //! \param count the size of the source memory block, in bytes //! \throws InvalidArgument //! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially //! unsafe functions like memcpy(), strcpy() and memmove(). However, //! not all standard libraries provides them, like Glibc. The library's //! memmove_s() is a near-drop in replacement. Its only a near-replacement //! because the library's version throws an InvalidArgument on a bounds violation. //! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__. //! If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library //! makes memcpy_s() and memmove_s() available. The library will also optionally //! make the symbols available if CRYPTOPP_WANT_SECURE_LIB is defined. //! CRYPTOPP_WANT_SECURE_LIB is in config.h, but it is disabled by default. //! \details memmove_s() will assert the pointers src and dest are not NULL //! in debug builds. Passing NULL for either pointer is undefined behavior. inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count) { // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55 // Pointers must be valid; otherwise undefined behavior CRYPTOPP_ASSERT(dest != NULL); CRYPTOPP_ASSERT(src != NULL); // Destination buffer must be large enough to satsify request CRYPTOPP_ASSERT(sizeInBytes >= count); if (count > sizeInBytes) throw InvalidArgument("memmove_s: buffer overflow"); #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4996) # if (CRYPTOPP_MSC_VERSION >= 1400) # pragma warning(disable: 6386) # endif #endif memmove(dest, src, count); #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif } #if __BORLANDC__ >= 0x620 // C++Builder 2010 workaround: can't use std::memcpy_s because it doesn't allow 0 lengths # define memcpy_s CryptoPP::memcpy_s # define memmove_s CryptoPP::memmove_s #endif #endif // __STDC_WANT_SECURE_LIB__ //! \brief Swaps two variables which are arrays //! \param a the first value //! \param b the second value //! \details C++03 does not provide support for std::swap(__m128i a, __m128i b) //! because __m128i is an unsigned long long[2]. Most compilers //! support it out of the box, but Sun Studio C++ compilers 12.2 and 12.3 do not. //! \sa How to swap two __m128i variables //! in C++03 given its an opaque type and an array? on Stack Overflow. template inline void vec_swap(T& a, T& b) { T t; t=a, a=b, b=t; } //! \brief Memory block initializer and eraser that attempts to survive optimizations //! \param ptr pointer to the memory block being written //! \param value the integer value to write for each byte //! \param num the size of the source memory block, in bytes //! \details Internally the function calls memset with the value value, and receives the //! return value from memset as a volatile pointer. inline void * memset_z(void *ptr, int value, size_t num) { // avoid extranous warning on GCC 4.3.2 Ubuntu 8.10 #if CRYPTOPP_GCC_VERSION >= 30001 if (__builtin_constant_p(num) && num==0) return ptr; #endif volatile void* x = memset(ptr, value, num); return const_cast(x); } //! \brief Replacement function for std::min //! \param a the first value //! \param b the second value //! \returns the minimum value based on a comparison of b \< a using operator\< //! \details STDMIN was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0 template inline const T& STDMIN(const T& a, const T& b) { return b < a ? b : a; } //! \brief Replacement function for std::max //! \param a the first value //! \param b the second value //! \returns the minimum value based on a comparison of a \< b using operator\< //! \details STDMAX was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0 template inline const T& STDMAX(const T& a, const T& b) { // can't use std::min or std::max in MSVC60 or Cygwin 1.1.0 return a < b ? b : a; } #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4389) #endif #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wsign-compare" # if (CRYPTOPP_LLVM_CLANG_VERSION >= 20800) || (CRYPTOPP_APPLE_CLANG_VERSION >= 30000) # pragma GCC diagnostic ignored "-Wtautological-compare" # elif (CRYPTOPP_GCC_VERSION >= 40300) # pragma GCC diagnostic ignored "-Wtype-limits" # endif #endif //! \brief Safe comparison of values that could be neagtive and incorrectly promoted //! \param a the first value //! \param b the second value //! \returns the minimum value based on a comparison a and b using operator<. //! \details The comparison b \< a is performed and the value returned is a's type T1. template inline const T1 UnsignedMin(const T1& a, const T2& b) { CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0)); if (sizeof(T1)<=sizeof(T2)) return b < (T2)a ? (T1)b : a; else return (T1)b < a ? (T1)b : a; } //! \brief Tests whether a conversion from -> to is safe to perform //! \param from the first value //! \param to the second value //! \returns true if its safe to convert from into to, false otherwise. template inline bool SafeConvert(T1 from, T2 &to) { to = (T2)from; if (from != to || (from > 0) != (to > 0)) return false; return true; } //! \brief Converts a value to a string //! \param value the value to convert //! \param base the base to use during the conversion //! \returns the string representation of value in base. template std::string IntToString(T value, unsigned int base = 10) { // Hack... set the high bit for uppercase. static const unsigned int HIGH_BIT = (1U << 31); const char CH = !!(base & HIGH_BIT) ? 'A' : 'a'; base &= ~HIGH_BIT; CRYPTOPP_ASSERT(base >= 2); if (value == 0) return "0"; bool negate = false; if (value < 0) { negate = true; value = 0-value; // VC .NET does not like -a } std::string result; while (value > 0) { T digit = value % base; result = char((digit < 10 ? '0' : (CH - 10)) + digit) + result; value /= base; } if (negate) result = "-" + result; return result; } //! \brief Converts an unsigned value to a string //! \param value the value to convert //! \param base the base to use during the conversion //! \returns the string representation of value in base. //! \details this template function specialization was added to suppress //! Coverity findings on IntToString() with unsigned types. template <> CRYPTOPP_DLL std::string IntToString(word64 value, unsigned int base); //! \brief Converts an Integer to a string //! \param value the Integer to convert //! \param base the base to use during the conversion //! \returns the string representation of value in base. //! \details This is a template specialization of IntToString(). Use it //! like IntToString(): //!
//!   // Print integer in base 10
//!   Integer n...
//!   std::string s = IntToString(n, 10);
//! 
//! \details The string is presented with lowercase letters by default. A //! hack is available to switch to uppercase letters without modifying //! the function signature. //!
//!   // Print integer in base 16, uppercase letters
//!   Integer n...
//!   const unsigned int UPPER = (1 << 31);
//!   std::string s = IntToString(n, (UPPER | 16));
template <> CRYPTOPP_DLL std::string IntToString(Integer value, unsigned int base); #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE # pragma GCC diagnostic pop #endif #define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue // this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack #define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y))) // these may be faster on other CPUs/compilers // #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255) // #define GETBYTE(x, y) (((byte *)&(x))[y]) #define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y))) //! \brief Returns the parity of a value //! \param value the value to provide the parity //! \returns 1 if the number 1-bits in the value is odd, 0 otherwise template unsigned int Parity(T value) { for (unsigned int i=8*sizeof(value)/2; i>0; i/=2) value ^= value >> i; return (unsigned int)value&1; } //! \brief Returns the number of 8-bit bytes or octets required for a value //! \param value the value to test //! \returns the minimum number of 8-bit bytes or octets required to represent a value template unsigned int BytePrecision(const T &value) { if (!value) return 0; unsigned int l=0, h=8*sizeof(value); while (h-l > 8) { unsigned int t = (l+h)/2; if (value >> t) l = t; else h = t; } return h/8; } //! \brief Returns the number of bits required for a value //! \param value the value to test //! \returns the maximum number of bits required to represent a value. template unsigned int BitPrecision(const T &value) { if (!value) return 0; unsigned int l=0, h=8*sizeof(value); while (h-l > 1) { unsigned int t = (l+h)/2; if (value >> t) l = t; else h = t; } return h; } //! Determines the number of trailing 0-bits in a value //! \param v the 32-bit value to test //! \returns the number of trailing 0-bits in v, starting at the least significant bit position //! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least //! significant bit position. The return value is undefined if there are no 1-bits set in the value v. //! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position. inline unsigned int TrailingZeros(word32 v) { // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors // We don't enable for Microsoft because it requires a runtime check. // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx CRYPTOPP_ASSERT(v != 0); #if defined(__GNUC__) && defined(__BMI__) return (unsigned int)_tzcnt_u32(v); #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400) return (unsigned int)__builtin_ctz(v); #elif defined(_MSC_VER) && (_MSC_VER >= 1400) unsigned long result; _BitScanForward(&result, v); return (unsigned int)result; #else // from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup static const int MultiplyDeBruijnBitPosition[32] = { 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 }; return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27]; #endif } //! Determines the number of trailing 0-bits in a value //! \param v the 64-bit value to test //! \returns the number of trailing 0-bits in v, starting at the least significant bit position //! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least //! significant bit position. The return value is undefined if there are no 1-bits set in the value v. //! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position. inline unsigned int TrailingZeros(word64 v) { // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors // We don't enable for Microsoft because it requires a runtime check. // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx CRYPTOPP_ASSERT(v != 0); #if defined(__GNUC__) && defined(__BMI__) && defined(__x86_64__) return (unsigned int)_tzcnt_u64(v); #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400) return (unsigned int)__builtin_ctzll(v); #elif defined(_MSC_VER) && (_MSC_VER >= 1400) && (defined(_M_X64) || defined(_M_IA64)) unsigned long result; _BitScanForward64(&result, v); return (unsigned int)result; #else return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32)); #endif } //! \brief Truncates the value to the specified number of bits. //! \param value the value to truncate or mask //! \param bits the number of bits to truncate or mask //! \returns the value truncated to the specified number of bits, starting at the least //! significant bit position //! \details This function masks the low-order bits of value and returns the result. The //! mask is created with (1 << bits) - 1. template inline T Crop(T value, size_t bits) { if (bits < 8*sizeof(value)) return T(value & ((T(1) << bits) - 1)); else return value; } //! \brief Returns the number of 8-bit bytes or octets required for the specified number of bits //! \param bitCount the number of bits //! \returns the minimum number of 8-bit bytes or octets required by bitCount //! \details BitsToBytes is effectively a ceiling function based on 8-bit bytes. inline size_t BitsToBytes(size_t bitCount) { return ((bitCount+7)/(8)); } //! \brief Returns the number of words required for the specified number of bytes //! \param byteCount the number of bytes //! \returns the minimum number of words required by byteCount //! \details BytesToWords is effectively a ceiling function based on WORD_SIZE. //! WORD_SIZE is defined in config.h inline size_t BytesToWords(size_t byteCount) { return ((byteCount+WORD_SIZE-1)/WORD_SIZE); } //! \brief Returns the number of words required for the specified number of bits //! \param bitCount the number of bits //! \returns the minimum number of words required by bitCount //! \details BitsToWords is effectively a ceiling function based on WORD_BITS. //! WORD_BITS is defined in config.h inline size_t BitsToWords(size_t bitCount) { return ((bitCount+WORD_BITS-1)/(WORD_BITS)); } //! \brief Returns the number of double words required for the specified number of bits //! \param bitCount the number of bits //! \returns the minimum number of double words required by bitCount //! \details BitsToDwords is effectively a ceiling function based on 2*WORD_BITS. //! WORD_BITS is defined in config.h inline size_t BitsToDwords(size_t bitCount) { return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS)); } //! Performs an XOR of a buffer with a mask //! \param buf the buffer to XOR with the mask //! \param mask the mask to XOR with the buffer //! \param count the size of the buffers, in bytes //! \details The function effectively visits each element in the buffers and performs //! buf[i] ^= mask[i]. buf and mask must be of equal size. CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count); //! Performs an XOR of an input buffer with a mask and stores the result in an output buffer //! \param output the destination buffer //! \param input the source buffer to XOR with the mask //! \param mask the mask buffer to XOR with the input buffer //! \param count the size of the buffers, in bytes //! \details The function effectively visits each element in the buffers and performs //! output[i] = input[i] ^ mask[i]. output, input and mask must be of equal size. CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count); //! \brief Performs a near constant-time comparison of two equally sized buffers //! \param buf1 the first buffer //! \param buf2 the second buffer //! \param count the size of the buffers, in bytes //! \details The function effectively performs an XOR of the elements in two equally sized buffers //! and retruns a result based on the XOR operation. The function is near constant-time because //! CPU micro-code timings could affect the "constant-ness". Calling code is responsible for //! mitigating timing attacks if the buffers are \a not equally sized. //! \sa ModPowerOf2 CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count); //! \brief Tests whether a value is a power of 2 //! \param value the value to test //! \returns true if value is a power of 2, false otherwise //! \details The function creates a mask of value - 1 and returns the result of //! an AND operation compared to 0. If value is 0 or less than 0, then the function returns false. template inline bool IsPowerOf2(const T &value) { return value > 0 && (value & (value-1)) == 0; } #if defined(__GNUC__) && defined(__BMI__) template <> inline bool IsPowerOf2(const word32 &value) { return value > 0 && _blsr_u32(value) == 0; } # if defined(__x86_64__) template <> inline bool IsPowerOf2(const word64 &value) { return value > 0 && _blsr_u64(value) == 0; } # endif #endif //! \brief Performs a saturating subtract clamped at 0 //! \param a the minuend //! \param b the subtrahend //! \returns the difference produced by the saturating subtract //! \details Saturating arithmetic restricts results to a fixed range. Results that are less than 0 are clamped at 0. //! \details Use of saturating arithmetic in places can be advantageous because it can //! avoid a branch by using an instruction like a conditional move (CMOVE). template inline T1 SaturatingSubtract(const T1 &a, const T2 &b) { // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html return T1((a > b) ? (a - b) : 0); } //! \brief Performs a saturating subtract clamped at 1 //! \param a the minuend //! \param b the subtrahend //! \returns the difference produced by the saturating subtract //! \details Saturating arithmetic restricts results to a fixed range. Results that are less than //! 1 are clamped at 1. //! \details Use of saturating arithmetic in places can be advantageous because it can //! avoid a branch by using an instruction like a conditional move (CMOVE). template inline T1 SaturatingSubtract1(const T1 &a, const T2 &b) { // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html return T1((a > b) ? (a - b) : 1); } //! \brief Reduces a value to a power of 2 //! \param a the first value //! \param b the second value //! \returns ModPowerOf2() returns a & (b-1). b must be a power of 2. //! Use IsPowerOf2() to determine if b is a suitable candidate. //! \sa IsPowerOf2 template inline T2 ModPowerOf2(const T1 &a, const T2 &b) { CRYPTOPP_ASSERT(IsPowerOf2(b)); // Coverity finding CID 170383 Overflowed return value (INTEGER_OVERFLOW) return T2(a) & SaturatingSubtract(b,1U); } //! \brief Rounds a value down to a multiple of a second value //! \param n the value to reduce //! \param m the value to reduce \n to to a multiple //! \returns the possibly unmodified value \n //! \details RoundDownToMultipleOf is effectively a floor function based on m. The function returns //! the value n - n\%m. If n is a multiple of m, then the original value is returned. template inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m) { if (IsPowerOf2(m)) return n - ModPowerOf2(n, m); else return n - n%m; } //! \brief Rounds a value up to a multiple of a second value //! \param n the value to reduce //! \param m the value to reduce \n to to a multiple //! \returns the possibly unmodified value \n //! \details RoundUpToMultipleOf is effectively a ceiling function based on m. The function //! returns the value n + n\%m. If n is a multiple of m, then the original value is //! returned. If the value n would overflow, then an InvalidArgument exception is thrown. template inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m) { if (n > (SIZE_MAX/sizeof(T1))-m-1) throw InvalidArgument("RoundUpToMultipleOf: integer overflow"); return RoundDownToMultipleOf(T1(n+m-1), m); } //! \brief Returns the minimum alignment requirements of a type //! \param dummy an unused Visual C++ 6.0 workaround //! \returns the minimum alignment requirements of a type, in bytes //! \details Internally the function calls C++11's alignof if available. If not available, //! then the function uses compiler specific extensions such as __alignof and //! _alignof_. If an extension is not available, then the function uses //! __BIGGEST_ALIGNMENT__ if __BIGGEST_ALIGNMENT__ is smaller than sizeof(T). //! sizeof(T) is used if all others are not available. //! In all cases, if CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS is defined, then the //! function returns 1. template inline unsigned int GetAlignmentOf(T *dummy=NULL) // VC60 workaround { // GCC 4.6 (circa 2008) and above aggressively uses vectorization. #if defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS) if (sizeof(T) < 16) return 1; #endif CRYPTOPP_UNUSED(dummy); #if defined(CRYPTOPP_CXX11_ALIGNOF) return alignof(T); #elif (_MSC_VER >= 1300) return __alignof(T); #elif defined(__GNUC__) return __alignof__(T); #elif CRYPTOPP_BOOL_SLOW_WORD64 return UnsignedMin(4U, sizeof(T)); #else # if __BIGGEST_ALIGNMENT__ if (__BIGGEST_ALIGNMENT__ < sizeof(T)) return __BIGGEST_ALIGNMENT__; else # endif return sizeof(T); #endif } //! \brief Determines whether ptr is aligned to a minimum value //! \param ptr the pointer being checked for alignment //! \param alignment the alignment value to test the pointer against //! \returns true if ptr is aligned on at least align boundary //! \details Internally the function tests whether alignment is 1. If so, the function returns true. //! If not, then the function effectively performs a modular reduction and returns true if the residue is 0 inline bool IsAlignedOn(const void *ptr, unsigned int alignment) { return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)ptr, alignment) == 0 : (size_t)ptr % alignment == 0); } //! \brief Determines whether ptr is minimally aligned //! \param ptr the pointer to check for alignment //! \param dummy an unused Visual C++ 6.0 workaround //! \returns true if ptr follows native byte ordering, false otherwise //! \details Internally the function calls IsAlignedOn with a second parameter of GetAlignmentOf template inline bool IsAligned(const void *ptr, T *dummy=NULL) // VC60 workaround { CRYPTOPP_UNUSED(dummy); return IsAlignedOn(ptr, GetAlignmentOf()); } #if defined(IS_LITTLE_ENDIAN) typedef LittleEndian NativeByteOrder; #elif defined(IS_BIG_ENDIAN) typedef BigEndian NativeByteOrder; #else # error "Unable to determine endian-ness" #endif //! \brief Returns NativeByteOrder as an enumerated ByteOrder value //! \returns LittleEndian if the native byte order is little-endian, and BigEndian if the //! native byte order is big-endian //! \details NativeByteOrder is a typedef depending on the platform. If IS_LITTLE_ENDIAN is //! set in config.h, then GetNativeByteOrder returns LittleEndian. If //! IS_BIG_ENDIAN is set, then GetNativeByteOrder returns BigEndian. //! \note There are other byte orders besides little- and big-endian, and they include bi-endian //! and PDP-endian. If a system is neither little-endian nor big-endian, then a compile time error occurs. inline ByteOrder GetNativeByteOrder() { return NativeByteOrder::ToEnum(); } //! \brief Determines whether order follows native byte ordering //! \param order the ordering being tested against native byte ordering //! \returns true if order follows native byte ordering, false otherwise inline bool NativeByteOrderIs(ByteOrder order) { return order == GetNativeByteOrder(); } //! \brief Returns the direction the cipher is being operated //! \param obj the cipher object being queried //! \returns \p ENCRYPTION if the cipher obj is being operated in its forward direction, //! \p DECRYPTION otherwise //! \details A cipher can be operated in a "forward" direction (encryption) or a "reverse" //! direction (decryption). The operations do not have to be symmetric, meaning a second //! application of the transformation does not necessariy return the original message. //! That is, E(D(m)) may not equal E(E(m)); and D(E(m)) may not //! equal D(D(m)). template inline CipherDir GetCipherDir(const T &obj) { return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION; } //! \brief Attempts to reclaim unused memory //! \throws bad_alloc //! \details In the normal course of running a program, a request for memory normally succeeds. If a //! call to AlignedAllocate or UnalignedAllocate fails, then CallNewHandler is called in //! an effort to recover. Internally, CallNewHandler calls set_new_handler(NULL) in an effort //! to free memory. There is no guarantee CallNewHandler will be able to procure more memory so //! an allocation succeeds. If the call to set_new_handler fails, then CallNewHandler throws //! a bad_alloc exception. CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler(); //! \brief Performs an addition with carry on a block of bytes //! \param inout the byte block //! \param size the size of the block, in bytes //! \details Performs an addition with carry by adding 1 on a block of bytes starting at the least //! significant byte. Once carry is 0, the function terminates and returns to the caller. //! \note The function is not constant time because it stops processing when the carry is 0. inline void IncrementCounterByOne(byte *inout, unsigned int size) { CRYPTOPP_ASSERT(inout != NULL); CRYPTOPP_ASSERT(size < INT_MAX); for (int i=int(size-1), carry=1; i>=0 && carry; i--) carry = !++inout[i]; } //! \brief Performs an addition with carry on a block of bytes //! \param output the destination block of bytes //! \param input the source block of bytes //! \param size the size of the block //! \details Performs an addition with carry on a block of bytes starting at the least significant //! byte. Once carry is 0, the remaining bytes from input are copied to output using memcpy. //! \details The function is \a close to near-constant time because it operates on all the bytes in the blocks. inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int size) { CRYPTOPP_ASSERT(output != NULL); CRYPTOPP_ASSERT(input != NULL); CRYPTOPP_ASSERT(size < INT_MAX); int i, carry; for (i=int(size-1), carry=1; i>=0 && carry; i--) carry = ((output[i] = input[i]+1) == 0); memcpy_s(output, size, input, size_t(i)+1); } //! \brief Performs a branchless swap of values a and b if condition c is true //! \param c the condition to perform the swap //! \param a the first value //! \param b the second value template inline void ConditionalSwap(bool c, T &a, T &b) { T t = c * (a ^ b); a ^= t; b ^= t; } //! \brief Performs a branchless swap of pointers a and b if condition c is true //! \param c the condition to perform the swap //! \param a the first pointer //! \param b the second pointer template inline void ConditionalSwapPointers(bool c, T &a, T &b) { ptrdiff_t t = size_t(c) * (a - b); a -= t; b += t; } // see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html // and https://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data //! \brief Sets each element of an array to 0 //! \param buf an array of elements //! \param n the number of elements in the array //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal template void SecureWipeBuffer(T *buf, size_t n) { // GCC 4.3.2 on Cygwin optimizes away the first store if this loop is done in the forward direction volatile T *p = buf+n; while (n--) *((volatile T*)(--p)) = 0; } #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) //! \brief Sets each byte of an array to 0 //! \param buf an array of bytes //! \param n the number of elements in the array //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. template<> inline void SecureWipeBuffer(byte *buf, size_t n) { volatile byte *p = buf; #ifdef __GNUC__ asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory"); #else __stosb((byte *)(size_t)p, 0, n); #endif } //! \brief Sets each 16-bit element of an array to 0 //! \param buf an array of 16-bit words //! \param n the number of elements in the array //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. template<> inline void SecureWipeBuffer(word16 *buf, size_t n) { volatile word16 *p = buf; #ifdef __GNUC__ asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory"); #else __stosw((word16 *)(size_t)p, 0, n); #endif } //! \brief Sets each 32-bit element of an array to 0 //! \param buf an array of 32-bit words //! \param n the number of elements in the array //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. template<> inline void SecureWipeBuffer(word32 *buf, size_t n) { volatile word32 *p = buf; #ifdef __GNUC__ asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory"); #else __stosd((unsigned long *)(size_t)p, 0, n); #endif } //! \brief Sets each 64-bit element of an array to 0 //! \param buf an array of 64-bit words //! \param n the number of elements in the array //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. template<> inline void SecureWipeBuffer(word64 *buf, size_t n) { #if CRYPTOPP_BOOL_X64 volatile word64 *p = buf; #ifdef __GNUC__ asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory"); #else __stosq((word64 *)(size_t)p, 0, n); #endif #else SecureWipeBuffer((word32 *)buf, 2*n); #endif } #endif // #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) #if (_MSC_VER >= 1700) && defined(_M_ARM) template<> inline void SecureWipeBuffer(byte *buf, size_t n) { char *p = reinterpret_cast(buf+n); while (n--) __iso_volatile_store8(--p, 0); } template<> inline void SecureWipeBuffer(word16 *buf, size_t n) { short *p = reinterpret_cast(buf+n); while (n--) __iso_volatile_store16(--p, 0); } template<> inline void SecureWipeBuffer(word32 *buf, size_t n) { int *p = reinterpret_cast(buf+n); while (n--) __iso_volatile_store32(--p, 0); } template<> inline void SecureWipeBuffer(word64 *buf, size_t n) { __int64 *p = reinterpret_cast<__int64*>(buf+n); while (n--) __iso_volatile_store64(--p, 0); } #endif //! \brief Sets each element of an array to 0 //! \param buf an array of elements //! \param n the number of elements in the array //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. template inline void SecureWipeArray(T *buf, size_t n) { if (sizeof(T) % 8 == 0 && GetAlignmentOf() % GetAlignmentOf() == 0) SecureWipeBuffer((word64 *)(void *)buf, n * (sizeof(T)/8)); else if (sizeof(T) % 4 == 0 && GetAlignmentOf() % GetAlignmentOf() == 0) SecureWipeBuffer((word32 *)(void *)buf, n * (sizeof(T)/4)); else if (sizeof(T) % 2 == 0 && GetAlignmentOf() % GetAlignmentOf() == 0) SecureWipeBuffer((word16 *)(void *)buf, n * (sizeof(T)/2)); else SecureWipeBuffer((byte *)(void *)buf, n * sizeof(T)); } //! \brief Converts a wide character C-string to a multibyte string //! \param str C-string consisting of wide characters //! \param throwOnError flag indication the function should throw on error //! \returns str converted to a multibyte string or an empty string. //! \details StringNarrow converts a wide string to a narrow string using C++ std::wcstombs() under //! the executing thread's locale. A locale must be set before using this function, and it can be //! set with std::setlocale() if needed. Upon success, the converted string is returned. //! \details Upon failure with throwOnError as false, the function returns an empty string. If //! throwOnError as true, the function throws an InvalidArgument() exception. //! \note If you try to convert, say, the Chinese character for "bone" from UTF-16 (0x9AA8) to UTF-8 //! (0xE9 0xAA 0xA8), then you must ensure the locale is available. If the locale is not available, //! then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception. #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 std::string StringNarrow(const wchar_t *str, bool throwOnError = true); #else static std::string StringNarrow(const wchar_t *str, bool throwOnError = true) { CRYPTOPP_ASSERT(str); std::string result; // Safer functions on Windows for C&A, https://github.com/weidai11/cryptopp/issues/55 #if (CRYPTOPP_MSC_VERSION >= 1400) size_t len=0, size=0; errno_t err = 0; //const wchar_t* ptr = str; //while (*ptr++) len++; len = wcslen(str)+1; err = wcstombs_s(&size, NULL, 0, str, len*sizeof(wchar_t)); CRYPTOPP_ASSERT(err == 0); if (err != 0) {goto CONVERSION_ERROR;} result.resize(size); err = wcstombs_s(&size, &result[0], size, str, len*sizeof(wchar_t)); CRYPTOPP_ASSERT(err == 0); if (err != 0) { CONVERSION_ERROR: if (throwOnError) throw InvalidArgument("StringNarrow: wcstombs_s() call failed with error " + IntToString(err)); else return std::string(); } // The safe routine's size includes the NULL. if (!result.empty() && result[size - 1] == '\0') result.erase(size - 1); #else size_t size = wcstombs(NULL, str, 0); CRYPTOPP_ASSERT(size != (size_t)-1); if (size == (size_t)-1) {goto CONVERSION_ERROR;} result.resize(size); size = wcstombs(&result[0], str, size); CRYPTOPP_ASSERT(size != (size_t)-1); if (size == (size_t)-1) { CONVERSION_ERROR: if (throwOnError) throw InvalidArgument("StringNarrow: wcstombs() call failed"); else return std::string(); } #endif return result; } #endif // StringNarrow and CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 #ifdef CRYPTOPP_DOXYGEN_PROCESSING //! \brief Allocates a buffer on 16-byte boundary //! \param size the size of the buffer //! \details AlignedAllocate is primarily used when the data will be proccessed by MMX, SSE2 and NEON //! instructions. The assembly language routines rely on the alignment. If the alignment is not //! respected, then a SIGBUS could be generated on Unix and Linux, and an //! EXCEPTION_DATATYPE_MISALIGNMENT could be generated on Windows. //! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is //! defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size); //! \brief Frees a buffer allocated with AlignedAllocate //! \param ptr the buffer to free //! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is //! defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr); #endif // CRYPTOPP_DOXYGEN_PROCESSING #if CRYPTOPP_BOOL_ALIGN16 CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size); CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr); #endif // CRYPTOPP_BOOL_ALIGN16 //! \brief Allocates a buffer //! \param size the size of the buffer CRYPTOPP_DLL void * CRYPTOPP_API UnalignedAllocate(size_t size); //! \brief Frees a buffer allocated with UnalignedAllocate //! \param ptr the buffer to free CRYPTOPP_DLL void CRYPTOPP_API UnalignedDeallocate(void *ptr); // ************** rotate functions *************** //! \brief Performs a left rotate //! \tparam T the word type //! \param x the value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. //! \details y must be in the range [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! Use rotlMod if the rotate amount y is outside the range. //! \note rotlFixed attempts to enlist a rotate IMM instruction because its often faster //! than a rotate REG. Immediate rotates can be up to three times faster than their register //! counterparts. template inline T rotlFixed(T x, unsigned int y) { // Portable rotate that reduces to single instruction... // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157, // https://software.intel.com/en-us/forums/topic/580884 // and https://llvm.org/bugs/show_bug.cgi?id=24226 static const unsigned int THIS_SIZE = sizeof(T)*8; static const unsigned int MASK = THIS_SIZE-1; CRYPTOPP_ASSERT(y < THIS_SIZE); return T((x<>(-y&MASK))); } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. //! \details y must be in the range [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! Use rotrMod if the rotate amount y is outside the range. //! \note rotrFixed attempts to enlist a rotate IMM instruction because its often faster //! than a rotate REG. Immediate rotates can be up to three times faster than their register //! counterparts. template inline T rotrFixed(T x, unsigned int y) { // Portable rotate that reduces to single instruction... // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157, // https://software.intel.com/en-us/forums/topic/580884 // and https://llvm.org/bugs/show_bug.cgi?id=24226 static const unsigned int THIS_SIZE = sizeof(T)*8; static const unsigned int MASK = THIS_SIZE-1; CRYPTOPP_ASSERT(y < THIS_SIZE); return T((x >> y)|(x<<(-y&MASK))); } //! \brief Performs a left rotate //! \tparam T the word type //! \param x the value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. //! \details y must be in the range [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! Use rotlMod if the rotate amount y is outside the range. //! \note rotlVariable attempts to enlist a rotate IMM instruction because its often faster //! than a rotate REG. Immediate rotates can be up to three times faster than their register //! counterparts. template inline T rotlVariable(T x, unsigned int y) { static const unsigned int THIS_SIZE = sizeof(T)*8; static const unsigned int MASK = THIS_SIZE-1; CRYPTOPP_ASSERT(y < THIS_SIZE); return T((x<>(-y&MASK))); } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. //! \details y must be in the range [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! Use rotrMod if the rotate amount y is outside the range. //! \note rotrVariable attempts to enlist a rotate IMM instruction because its often faster //! than a rotate REG. Immediate rotates can be up to three times faster than their register //! counterparts. template inline T rotrVariable(T x, unsigned int y) { static const unsigned int THIS_SIZE = sizeof(T)*8; static const unsigned int MASK = THIS_SIZE-1; CRYPTOPP_ASSERT(y < THIS_SIZE); return T((x>>y)|(x<<(-y&MASK))); } //! \brief Performs a left rotate //! \tparam T the word type //! \param x the value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. //! \details y is reduced to the range [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotrVariable will use either rotate IMM or rotate REG. template inline T rotlMod(T x, unsigned int y) { static const unsigned int THIS_SIZE = sizeof(T)*8; static const unsigned int MASK = THIS_SIZE-1; return T((x<<(y&MASK))|(x>>(-y&MASK))); } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. //! \details y is reduced to the range [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotrVariable will use either rotate IMM or rotate REG. template inline T rotrMod(T x, unsigned int y) { static const unsigned int THIS_SIZE = sizeof(T)*8; static const unsigned int MASK = THIS_SIZE-1; return T((x>>(y&MASK))|(x<<(-y&MASK))); } #ifdef _MSC_VER //! \brief Performs a left rotate //! \tparam T the word type //! \param x the 32-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotl provided by //! . The value x to be rotated is 32-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotlFixed will assert in Debug builds if is outside the allowed range. template<> inline word32 rotlFixed(word32 x, unsigned int y) { // Uses Microsoft call, bound to C/C++ language rules. CRYPTOPP_ASSERT(y < 8*sizeof(x)); return y ? _lrotl(x, static_cast(y)) : x; } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the 32-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotr provided by //! . The value x to be rotated is 32-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotrFixed will assert in Debug builds if is outside the allowed range. template<> inline word32 rotrFixed(word32 x, unsigned int y) { // Uses Microsoft call, bound to C/C++ language rules. CRYPTOPP_ASSERT(y < 8*sizeof(x)); return y ? _lrotr(x, static_cast(y)) : x; } //! \brief Performs a left rotate //! \tparam T the word type //! \param x the 32-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotl provided by //! . The value x to be rotated is 32-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotlVariable will assert in Debug builds if is outside the allowed range. template<> inline word32 rotlVariable(word32 x, unsigned int y) { CRYPTOPP_ASSERT(y < 8*sizeof(x)); return _lrotl(x, static_cast(y)); } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the 32-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotr provided by //! . The value x to be rotated is 32-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotrVariable will assert in Debug builds if is outside the allowed range. template<> inline word32 rotrVariable(word32 x, unsigned int y) { CRYPTOPP_ASSERT(y < 8*sizeof(x)); return _lrotr(x, static_cast(y)); } //! \brief Performs a left rotate //! \tparam T the word type //! \param x the 32-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotl provided by //! . The value x to be rotated is 32-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. template<> inline word32 rotlMod(word32 x, unsigned int y) { y %= 8*sizeof(x); return _lrotl(x, static_cast(y)); } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the 32-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotr provided by //! . The value x to be rotated is 32-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. template<> inline word32 rotrMod(word32 x, unsigned int y) { y %= 8*sizeof(x); return _lrotr(x, static_cast(y)); } #endif // #ifdef _MSC_VER #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) // Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions //! \brief Performs a left rotate //! \tparam T the word type //! \param x the 64-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotl provided by //! . The value x to be rotated is 64-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotrFixed will assert in Debug builds if is outside the allowed range. template<> inline word64 rotlFixed(word64 x, unsigned int y) { // Uses Microsoft call, bound to C/C++ language rules. CRYPTOPP_ASSERT(y < 8*sizeof(x)); return y ? _rotl64(x, static_cast(y)) : x; } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the 64-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotr provided by //! . The value x to be rotated is 64-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotrFixed will assert in Debug builds if is outside the allowed range. template<> inline word64 rotrFixed(word64 x, unsigned int y) { // Uses Microsoft call, bound to C/C++ language rules. CRYPTOPP_ASSERT(y < 8*sizeof(x)); return y ? _rotr64(x, static_cast(y)) : x; } //! \brief Performs a left rotate //! \tparam T the word type //! \param x the 64-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotl provided by //! . The value x to be rotated is 64-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotlVariable will assert in Debug builds if is outside the allowed range. template<> inline word64 rotlVariable(word64 x, unsigned int y) { CRYPTOPP_ASSERT(y < 8*sizeof(x)); return _rotl64(x, static_cast(y)); } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the 64-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotr provided by //! . The value x to be rotated is 64-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. //! \note rotrVariable will assert in Debug builds if is outside the allowed range. template<> inline word64 rotrVariable(word64 x, unsigned int y) { CRYPTOPP_ASSERT(y < 8*sizeof(x)); return y ? _rotr64(x, static_cast(y)) : x; } //! \brief Performs a left rotate //! \tparam T the word type //! \param x the 64-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotl provided by //! . The value x to be rotated is 64-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. template<> inline word64 rotlMod(word64 x, unsigned int y) { CRYPTOPP_ASSERT(y < 8*sizeof(x)); return y ? _rotl64(x, static_cast(y)) : x; } //! \brief Performs a right rotate //! \tparam T the word type //! \param x the 64-bit value to rotate //! \param y the number of bit positions to rotate the value //! \details This is a Microsoft specific implementation using _lrotr provided by //! . The value x to be rotated is 64-bits. y must be in the range //! [0, sizeof(T)*8 - 1] to avoid undefined behavior. template<> inline word64 rotrMod(word64 x, unsigned int y) { CRYPTOPP_ASSERT(y < 8*sizeof(x)); return y ? _rotr64(x, static_cast(y)) : x; } #endif // #if _MSC_VER >= 1310 #if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER) // Intel C++ Compiler 10.0 gives undefined externals with these template<> inline word16 rotlFixed(word16 x, unsigned int y) { // Intrinsic, not bound to C/C++ language rules. return _rotl16(x, static_cast(y)); } template<> inline word16 rotrFixed(word16 x, unsigned int y) { // Intrinsic, not bound to C/C++ language rules. return _rotr16(x, static_cast(y)); } template<> inline word16 rotlVariable(word16 x, unsigned int y) { return _rotl16(x, static_cast(y)); } template<> inline word16 rotrVariable(word16 x, unsigned int y) { return _rotr16(x, static_cast(y)); } template<> inline word16 rotlMod(word16 x, unsigned int y) { return _rotl16(x, static_cast(y)); } template<> inline word16 rotrMod(word16 x, unsigned int y) { return _rotr16(x, static_cast(y)); } template<> inline byte rotlFixed(byte x, unsigned int y) { // Intrinsic, not bound to C/C++ language rules. return _rotl8(x, static_cast(y)); } template<> inline byte rotrFixed(byte x, unsigned int y) { // Intrinsic, not bound to C/C++ language rules. return _rotr8(x, static_cast(y)); } template<> inline byte rotlVariable(byte x, unsigned int y) { return _rotl8(x, static_cast(y)); } template<> inline byte rotrVariable(byte x, unsigned int y) { return _rotr8(x, static_cast(y)); } template<> inline byte rotlMod(byte x, unsigned int y) { return _rotl8(x, static_cast(y)); } template<> inline byte rotrMod(byte x, unsigned int y) { return _rotr8(x, static_cast(y)); } #endif // #if _MSC_VER >= 1400 #if (defined(__MWERKS__) && TARGET_CPU_PPC) template<> inline word32 rotlFixed(word32 x, unsigned int y) { CRYPTOPP_ASSERT(y < 32); return y ? __rlwinm(x,y,0,31) : x; } template<> inline word32 rotrFixed(word32 x, unsigned int y) { CRYPTOPP_ASSERT(y < 32); return y ? __rlwinm(x,32-y,0,31) : x; } template<> inline word32 rotlVariable(word32 x, unsigned int y) { CRYPTOPP_ASSERT(y < 32); return (__rlwnm(x,y,0,31)); } template<> inline word32 rotrVariable(word32 x, unsigned int y) { CRYPTOPP_ASSERT(y < 32); return (__rlwnm(x,32-y,0,31)); } template<> inline word32 rotlMod(word32 x, unsigned int y) { return (__rlwnm(x,y,0,31)); } template<> inline word32 rotrMod(word32 x, unsigned int y) { return (__rlwnm(x,32-y,0,31)); } #endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC) // ************** endian reversal *************** //! \brief Gets a byte from a value //! \param order the ByteOrder of the value //! \param value the value to retrieve the byte //! \param index the location of the byte to retrieve template inline unsigned int GetByte(ByteOrder order, T value, unsigned int index) { if (order == LITTLE_ENDIAN_ORDER) return GETBYTE(value, index); else return GETBYTE(value, sizeof(T)-index-1); } //! \brief Reverses bytes in a 8-bit value //! \param value the 8-bit value to reverse //! \note ByteReverse returns the value passed to it since there is nothing to reverse inline byte ByteReverse(byte value) { return value; } //! \brief Reverses bytes in a 16-bit value //! \brief Performs an endian reversal //! \param value the 16-bit value to reverse //! \details ByteReverse calls bswap if available. Otherwise the function performs a 8-bit rotate on the word16 inline word16 ByteReverse(word16 value) { #ifdef CRYPTOPP_BYTESWAP_AVAILABLE return bswap_16(value); #elif defined(_MSC_VER) && _MSC_VER >= 1300 return _byteswap_ushort(value); #else return rotlFixed(value, 8U); #endif } //! \brief Reverses bytes in a 32-bit value //! \brief Performs an endian reversal //! \param value the 32-bit value to reverse //! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word32 inline word32 ByteReverse(word32 value) { #if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) __asm__ ("bswap %0" : "=r" (value) : "0" (value)); return value; #elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) return bswap_32(value); #elif defined(__MWERKS__) && TARGET_CPU_PPC return (word32)__lwbrx(&value,0); #elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL)) return _byteswap_ulong(value); #elif CRYPTOPP_FAST_ROTATE(32) // 5 instructions with rotate instruction, 9 without return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff); #else // 6 instructions with rotate instruction, 8 without value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); return rotlFixed(value, 16U); #endif } //! \brief Reverses bytes in a 64-bit value //! \brief Performs an endian reversal //! \param value the 64-bit value to reverse //! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word64 inline word64 ByteReverse(word64 value) { #if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__) __asm__ ("bswap %0" : "=r" (value) : "0" (value)); return value; #elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) return bswap_64(value); #elif defined(_MSC_VER) && _MSC_VER >= 1300 return _byteswap_uint64(value); #elif CRYPTOPP_BOOL_SLOW_WORD64 return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32)); #else value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8); value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16); return rotlFixed(value, 32U); #endif } //! \brief Reverses bits in a 8-bit value //! \param value the 8-bit value to reverse //! \details BitReverse performs a combination of shifts on the byte inline byte BitReverse(byte value) { value = byte((value & 0xAA) >> 1) | byte((value & 0x55) << 1); value = byte((value & 0xCC) >> 2) | byte((value & 0x33) << 2); return rotlFixed(value, 4U); } //! \brief Reverses bits in a 16-bit value //! \param value the 16-bit value to reverse //! \details BitReverse performs a combination of shifts on the word16 inline word16 BitReverse(word16 value) { value = word16((value & 0xAAAA) >> 1) | word16((value & 0x5555) << 1); value = word16((value & 0xCCCC) >> 2) | word16((value & 0x3333) << 2); value = word16((value & 0xF0F0) >> 4) | word16((value & 0x0F0F) << 4); return ByteReverse(value); } //! \brief Reverses bits in a 32-bit value //! \param value the 32-bit value to reverse //! \details BitReverse performs a combination of shifts on the word32 inline word32 BitReverse(word32 value) { value = word32((value & 0xAAAAAAAA) >> 1) | word32((value & 0x55555555) << 1); value = word32((value & 0xCCCCCCCC) >> 2) | word32((value & 0x33333333) << 2); value = word32((value & 0xF0F0F0F0) >> 4) | word32((value & 0x0F0F0F0F) << 4); return ByteReverse(value); } //! \brief Reverses bits in a 64-bit value //! \param value the 64-bit value to reverse //! \details BitReverse performs a combination of shifts on the word64 inline word64 BitReverse(word64 value) { #if CRYPTOPP_BOOL_SLOW_WORD64 return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32)); #else value = word64((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | word64((value & W64LIT(0x5555555555555555)) << 1); value = word64((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | word64((value & W64LIT(0x3333333333333333)) << 2); value = word64((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | word64((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4); return ByteReverse(value); #endif } //! \brief Reverses bits in a value //! \param value the value to reverse //! \details The template overload of BitReverse operates on signed and unsigned values. //! Internally the size of T is checked, and then value is cast to a byte, //! word16, word32 or word64. After the cast, the appropriate BitReverse //! overload is called. template inline T BitReverse(T value) { if (sizeof(T) == 1) return (T)BitReverse((byte)value); else if (sizeof(T) == 2) return (T)BitReverse((word16)value); else if (sizeof(T) == 4) return (T)BitReverse((word32)value); else { CRYPTOPP_ASSERT(sizeof(T) == 8); return (T)BitReverse((word64)value); } } //! \brief Reverses bytes in a value depending upon endianess //! \tparam T the class or type //! \param order the ByteOrder the data is represented //! \param value the value to conditionally reverse //! \details Internally, the ConditionalByteReverse calls NativeByteOrderIs. //! If order matches native byte order, then the original value is returned. //! If not, then ByteReverse is called on the value before returning to the caller. template inline T ConditionalByteReverse(ByteOrder order, T value) { return NativeByteOrderIs(order) ? value : ByteReverse(value); } //! \brief Reverses bytes in an element from an array of elements //! \tparam T the class or type //! \param out the output array of elements //! \param in the input array of elements //! \param byteCount the total number of bytes in the array //! \details Internally, ByteReverse visits each element in the in array //! calls ByteReverse on it, and writes the result to out. //! \details ByteReverse does not process tail byes, or bytes that are //! \a not part of a full element. If T is int (and int is 4 bytes), then //! byteCount = 10 means only the first 2 elements or 8 bytes are //! reversed. //! \details The follwoing program should help illustrate the behavior. //!
vector v1, v2;
//!
//! v1.push_back(1);
//! v1.push_back(2);
//! v1.push_back(3);
//! v1.push_back(4);
//!
//! v2.resize(v1.size());
//! ByteReverse(&v2[0], &v1[0], 16);
//!
//! cout << "V1: ";
//! for(unsigned int i = 0; i < v1.size(); i++)
//!   cout << std::hex << v1[i] << " ";
//! cout << endl;
//!
//! cout << "V2: ";
//! for(unsigned int i = 0; i < v2.size(); i++)
//!   cout << std::hex << v2[i] << " ";
//! cout << endl;
//! The program above results in the follwoing output. //!
V1: 00000001 00000002 00000003 00000004
//! V2: 01000000 02000000 03000000 04000000
//! \sa ConditionalByteReverse template void ByteReverse(T *out, const T *in, size_t byteCount) { CRYPTOPP_ASSERT(byteCount % sizeof(T) == 0); size_t count = byteCount/sizeof(T); for (size_t i=0; ibyteCount = 10 means only the first 2 elements or 8 bytes are //! reversed. //! \sa ByteReverse template inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount) { if (!NativeByteOrderIs(order)) ByteReverse(out, in, byteCount); else if (in != out) memcpy_s(out, byteCount, in, byteCount); } template inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen) { const size_t U = sizeof(T); CRYPTOPP_ASSERT(inlen <= outlen*U); memcpy_s(out, outlen*U, in, inlen); memset_z((byte *)out+inlen, 0, outlen*U-inlen); ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U)); } #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *) { CRYPTOPP_UNUSED(order); return block[0]; } inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *) { return (order == BIG_ENDIAN_ORDER) ? block[1] | (block[0] << 8) : block[0] | (block[1] << 8); } inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *) { return (order == BIG_ENDIAN_ORDER) ? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24) : word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24); } inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *) { return (order == BIG_ENDIAN_ORDER) ? (word64(block[7]) | (word64(block[6]) << 8) | (word64(block[5]) << 16) | (word64(block[4]) << 24) | (word64(block[3]) << 32) | (word64(block[2]) << 40) | (word64(block[1]) << 48) | (word64(block[0]) << 56)) : (word64(block[0]) | (word64(block[1]) << 8) | (word64(block[2]) << 16) | (word64(block[3]) << 24) | (word64(block[4]) << 32) | (word64(block[5]) << 40) | (word64(block[6]) << 48) | (word64(block[7]) << 56)); } inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock) { CRYPTOPP_UNUSED(order); block[0] = (byte)(xorBlock ? (value ^ xorBlock[0]) : value); } inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock) { if (order == BIG_ENDIAN_ORDER) { if (xorBlock) { block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); } else { block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); } } else { if (xorBlock) { block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); } else { block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); } } } inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock) { if (order == BIG_ENDIAN_ORDER) { if (xorBlock) { block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); } else { block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); } } else { if (xorBlock) { block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); } else { block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); } } } inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock) { if (order == BIG_ENDIAN_ORDER) { if (xorBlock) { block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); } else { block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); } } else { if (xorBlock) { block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); } else { block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); } } } #endif // #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS template inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block) { //#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS // if (!assumeAligned) // return UnalignedGetWordNonTemplate(order, block, (T*)NULL); // CRYPTOPP_ASSERT(IsAligned(block)); //#endif // return ConditionalByteReverse(order, *reinterpret_cast(block)); CRYPTOPP_UNUSED(assumeAligned); #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS return ConditionalByteReverse(order, *reinterpret_cast((const void *)block)); #else T temp; memcpy(&temp, block, sizeof(T)); return ConditionalByteReverse(order, temp); #endif } template inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block) { result = GetWord(assumeAligned, order, block); } template inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL) { //#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS // if (!assumeAligned) // return UnalignedbyteNonTemplate(order, block, value, xorBlock); // CRYPTOPP_ASSERT(IsAligned(block)); // CRYPTOPP_ASSERT(IsAligned(xorBlock)); //#endif // *reinterpret_cast(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast(xorBlock) : 0); CRYPTOPP_UNUSED(assumeAligned); #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS *reinterpret_cast((void *)block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast((const void *)xorBlock) : 0); #else T t1, t2 = 0; t1 = ConditionalByteReverse(order, value); if (xorBlock) memcpy(&t2, xorBlock, sizeof(T)); memmove(block, &(t1 ^= t2), sizeof(T)); #endif } //! \class GetBlock //! \brief Access a block of memory //! \tparam T class or type //! \tparam B enumeration indicating endianess //! \tparam A flag indicating alignment //! \details GetBlock() provides alternate read access to a block of memory. The enumeration B is //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. //! Repeatedly applying operator() results in advancing in the block of memory. //! \details An example of reading two word32 values from a block of memory is shown below. w1 //! will be 0x03020100 and w1 will be 0x07060504. //!
//!    word32 w1, w2;
//!    byte buffer[8] = {0,1,2,3,4,5,6,7};
//!    GetBlock block(buffer);
//!    block(w1)(w2);
//! 
template class GetBlock { public: //! \brief Construct a GetBlock //! \param block the memory block GetBlock(const void *block) : m_block((const byte *)block) {} //! \brief Access a block of memory //! \tparam U class or type //! \param x the value to read //! \returns pointer to the remainder of the block after reading x template inline GetBlock & operator()(U &x) { CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T)); x = GetWord(A, B::ToEnum(), m_block); m_block += sizeof(T); return *this; } private: const byte *m_block; }; //! \class PutBlock //! \brief Access a block of memory //! \tparam T class or type //! \tparam B enumeration indicating endianess //! \tparam A flag indicating alignment //! \details PutBlock() provides alternate write access to a block of memory. The enumeration B is //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. //! Repeatedly applying operator() results in advancing in the block of memory. //! \details An example of writing two word32 values from a block of memory is shown below. After the code //! executes, the byte buffer will be {0,1,2,3,4,5,6,7}. //!
//!    word32 w1=0x03020100, w2=0x07060504;
//!    byte buffer[8];
//!    PutBlock block(NULL, buffer);
//!    block(w1)(w2);
//! 
template class PutBlock { public: //! \brief Construct a PutBlock //! \param block the memory block //! \param xorBlock optional mask PutBlock(const void *xorBlock, void *block) : m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {} //! \brief Access a block of memory //! \tparam U class or type //! \param x the value to write //! \returns pointer to the remainder of the block after writing x template inline PutBlock & operator()(U x) { PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock); m_block += sizeof(T); if (m_xorBlock) m_xorBlock += sizeof(T); return *this; } private: const byte *m_xorBlock; byte *m_block; }; //! \class BlockGetAndPut //! \brief Access a block of memory //! \tparam T class or type //! \tparam B enumeration indicating endianess //! \tparam GA flag indicating alignment for the Get operation //! \tparam PA flag indicating alignment for the Put operation //! \details GetBlock() provides alternate write access to a block of memory. The enumeration B is //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. //! \sa GetBlock() and PutBlock(). template struct BlockGetAndPut { // function needed because of C++ grammatical ambiguity between expression-statements and declarations static inline GetBlock Get(const void *block) {return GetBlock(block);} typedef PutBlock Put; }; template std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER) { if (!NativeByteOrderIs(order)) value = ByteReverse(value); return std::string((char *)&value, sizeof(value)); } template T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER) { T value = 0; memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value))); return NativeByteOrderIs(order) ? value : ByteReverse(value); } // ************** help remove warning on g++ *************** //! \class SafeShifter //! \brief Safely shift values when undefined behavior could occur //! \tparam overflow boolean flag indicating if overflow is present //! \details SafeShifter safely shifts values when undefined behavior could occur under C/C++ rules. //! The class behaves much like a saturating arithmetic class, clamping values rather than allowing //! the compiler to remove undefined behavior. //! \sa SafeShifter, SafeShifter template struct SafeShifter; //! \class SafeShifter //! \brief Shifts a value in the presence of overflow //! \details the \p true template parameter indicates overflow would occur. //! In this case, SafeShifter clamps the value and returns 0. template<> struct SafeShifter { //! \brief Right shifts a value that overflows //! \tparam T class or type //! \return 0 //! \details Since overflow == true, the value 0 is always returned. //! \sa SafeLeftShift template static inline T RightShift(T value, unsigned int bits) { CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits); return 0; } //! \brief Left shifts a value that overflows //! \tparam T class or type //! \return 0 //! \details Since overflow == true, the value 0 is always returned. //! \sa SafeRightShift template static inline T LeftShift(T value, unsigned int bits) { CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits); return 0; } }; //! \class SafeShifter //! \brief Shifts a value in the absence of overflow //! \details the \p false template parameter indicates overflow would \a not occur. //! In this case, SafeShifter returns the shfted value. template<> struct SafeShifter { //! \brief Right shifts a value that does not overflow //! \tparam T class or type //! \return the shifted value //! \details Since overflow == false, the shifted value is returned. //! \sa SafeLeftShift template static inline T RightShift(T value, unsigned int bits) { return value >> bits; } //! \brief Left shifts a value that does not overflow //! \tparam T class or type //! \return the shifted value //! \details Since overflow == false, the shifted value is returned. //! \sa SafeRightShift template static inline T LeftShift(T value, unsigned int bits) { return value << bits; } }; //! \class SafeRightShift //! \brief Safely right shift values when undefined behavior could occur //! \tparam bits the number of bit positions to shift the value //! \tparam T class or type //! \param value the value to right shift //! \result the shifted value or 0 //! \details SafeRightShift safely shifts the value to the right when undefined behavior //! could occur under C/C++ rules. SafeRightShift will return the shifted value or 0 //! if undefined behavior would occur. template inline T SafeRightShift(T value) { return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits); } //! \class SafeLeftShift //! \brief Safely left shift values when undefined behavior could occur //! \tparam bits the number of bit positions to shift the value //! \tparam T class or type //! \param value the value to left shift //! \result the shifted value or 0 //! \details SafeLeftShift safely shifts the value to the left when undefined behavior //! could occur under C/C++ rules. SafeLeftShift will return the shifted value or 0 //! if undefined behavior would occur. template inline T SafeLeftShift(T value) { return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits); } // ************** use one buffer for multiple data members *************** #define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate; NAMESPACE_END #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif #endif