1 | #ifndef CRYPTOPP_GF2N_H |
---|
2 | #define CRYPTOPP_GF2N_H |
---|
3 | |
---|
4 | /*! \file */ |
---|
5 | |
---|
6 | #include "cryptlib.h" |
---|
7 | #include "secblock.h" |
---|
8 | #include "algebra.h" |
---|
9 | #include "misc.h" |
---|
10 | #include "asn.h" |
---|
11 | |
---|
12 | #include <iosfwd> |
---|
13 | |
---|
14 | NAMESPACE_BEGIN(CryptoPP) |
---|
15 | |
---|
16 | //! Polynomial with Coefficients in GF(2) |
---|
17 | /*! \nosubgrouping */ |
---|
18 | class CRYPTOPP_DLL PolynomialMod2 |
---|
19 | { |
---|
20 | public: |
---|
21 | //! \name ENUMS, EXCEPTIONS, and TYPEDEFS |
---|
22 | //@{ |
---|
23 | //! divide by zero exception |
---|
24 | class DivideByZero : public Exception |
---|
25 | { |
---|
26 | public: |
---|
27 | DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {} |
---|
28 | }; |
---|
29 | |
---|
30 | typedef unsigned int RandomizationParameter; |
---|
31 | //@} |
---|
32 | |
---|
33 | //! \name CREATORS |
---|
34 | //@{ |
---|
35 | //! creates the zero polynomial |
---|
36 | PolynomialMod2(); |
---|
37 | //! copy constructor |
---|
38 | PolynomialMod2(const PolynomialMod2& t); |
---|
39 | |
---|
40 | //! convert from word |
---|
41 | /*! value should be encoded with the least significant bit as coefficient to x^0 |
---|
42 | and most significant bit as coefficient to x^(WORD_BITS-1) |
---|
43 | bitLength denotes how much memory to allocate initially |
---|
44 | */ |
---|
45 | PolynomialMod2(word value, size_t bitLength=WORD_BITS); |
---|
46 | |
---|
47 | //! convert from big-endian byte array |
---|
48 | PolynomialMod2(const byte *encodedPoly, size_t byteCount) |
---|
49 | {Decode(encodedPoly, byteCount);} |
---|
50 | |
---|
51 | //! convert from big-endian form stored in a BufferedTransformation |
---|
52 | PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount) |
---|
53 | {Decode(encodedPoly, byteCount);} |
---|
54 | |
---|
55 | //! create a random polynomial uniformly distributed over all polynomials with degree less than bitcount |
---|
56 | PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount) |
---|
57 | {Randomize(rng, bitcount);} |
---|
58 | |
---|
59 | //! return x^i |
---|
60 | static PolynomialMod2 CRYPTOPP_API Monomial(size_t i); |
---|
61 | //! return x^t0 + x^t1 + x^t2 |
---|
62 | static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2); |
---|
63 | //! return x^t0 + x^t1 + x^t2 + x^t3 + x^t4 |
---|
64 | static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4); |
---|
65 | //! return x^(n-1) + ... + x + 1 |
---|
66 | static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n); |
---|
67 | |
---|
68 | //! |
---|
69 | static const PolynomialMod2 & CRYPTOPP_API Zero(); |
---|
70 | //! |
---|
71 | static const PolynomialMod2 & CRYPTOPP_API One(); |
---|
72 | //@} |
---|
73 | |
---|
74 | //! \name ENCODE/DECODE |
---|
75 | //@{ |
---|
76 | //! minimum number of bytes to encode this polynomial |
---|
77 | /*! MinEncodedSize of 0 is 1 */ |
---|
78 | unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());} |
---|
79 | |
---|
80 | //! encode in big-endian format |
---|
81 | /*! if outputLen < MinEncodedSize, the most significant bytes will be dropped |
---|
82 | if outputLen > MinEncodedSize, the most significant bytes will be padded |
---|
83 | */ |
---|
84 | void Encode(byte *output, size_t outputLen) const; |
---|
85 | //! |
---|
86 | void Encode(BufferedTransformation &bt, size_t outputLen) const; |
---|
87 | |
---|
88 | //! |
---|
89 | void Decode(const byte *input, size_t inputLen); |
---|
90 | //! |
---|
91 | //* Precondition: bt.MaxRetrievable() >= inputLen |
---|
92 | void Decode(BufferedTransformation &bt, size_t inputLen); |
---|
93 | |
---|
94 | //! encode value as big-endian octet string |
---|
95 | void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; |
---|
96 | //! decode value as big-endian octet string |
---|
97 | void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); |
---|
98 | //@} |
---|
99 | |
---|
100 | //! \name ACCESSORS |
---|
101 | //@{ |
---|
102 | //! number of significant bits = Degree() + 1 |
---|
103 | unsigned int BitCount() const; |
---|
104 | //! number of significant bytes = ceiling(BitCount()/8) |
---|
105 | unsigned int ByteCount() const; |
---|
106 | //! number of significant words = ceiling(ByteCount()/sizeof(word)) |
---|
107 | unsigned int WordCount() const; |
---|
108 | |
---|
109 | //! return the n-th bit, n=0 being the least significant bit |
---|
110 | bool GetBit(size_t n) const {return GetCoefficient(n)!=0;} |
---|
111 | //! return the n-th byte |
---|
112 | byte GetByte(size_t n) const; |
---|
113 | |
---|
114 | //! the zero polynomial will return a degree of -1 |
---|
115 | signed int Degree() const {return (signed int)(BitCount()-1U);} |
---|
116 | //! degree + 1 |
---|
117 | unsigned int CoefficientCount() const {return BitCount();} |
---|
118 | //! return coefficient for x^i |
---|
119 | int GetCoefficient(size_t i) const |
---|
120 | {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;} |
---|
121 | //! return coefficient for x^i |
---|
122 | int operator[](unsigned int i) const {return GetCoefficient(i);} |
---|
123 | |
---|
124 | //! |
---|
125 | bool IsZero() const {return !*this;} |
---|
126 | //! |
---|
127 | bool Equals(const PolynomialMod2 &rhs) const; |
---|
128 | //@} |
---|
129 | |
---|
130 | //! \name MANIPULATORS |
---|
131 | //@{ |
---|
132 | //! |
---|
133 | PolynomialMod2& operator=(const PolynomialMod2& t); |
---|
134 | //! |
---|
135 | PolynomialMod2& operator&=(const PolynomialMod2& t); |
---|
136 | //! |
---|
137 | PolynomialMod2& operator^=(const PolynomialMod2& t); |
---|
138 | //! |
---|
139 | PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;} |
---|
140 | //! |
---|
141 | PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;} |
---|
142 | //! |
---|
143 | PolynomialMod2& operator*=(const PolynomialMod2& t); |
---|
144 | //! |
---|
145 | PolynomialMod2& operator/=(const PolynomialMod2& t); |
---|
146 | //! |
---|
147 | PolynomialMod2& operator%=(const PolynomialMod2& t); |
---|
148 | //! |
---|
149 | PolynomialMod2& operator<<=(unsigned int); |
---|
150 | //! |
---|
151 | PolynomialMod2& operator>>=(unsigned int); |
---|
152 | |
---|
153 | //! |
---|
154 | void Randomize(RandomNumberGenerator &rng, size_t bitcount); |
---|
155 | |
---|
156 | //! |
---|
157 | void SetBit(size_t i, int value = 1); |
---|
158 | //! set the n-th byte to value |
---|
159 | void SetByte(size_t n, byte value); |
---|
160 | |
---|
161 | //! |
---|
162 | void SetCoefficient(size_t i, int value) {SetBit(i, value);} |
---|
163 | |
---|
164 | //! |
---|
165 | void swap(PolynomialMod2 &a) {reg.swap(a.reg);} |
---|
166 | //@} |
---|
167 | |
---|
168 | //! \name UNARY OPERATORS |
---|
169 | //@{ |
---|
170 | //! |
---|
171 | bool operator!() const; |
---|
172 | //! |
---|
173 | PolynomialMod2 operator+() const {return *this;} |
---|
174 | //! |
---|
175 | PolynomialMod2 operator-() const {return *this;} |
---|
176 | //@} |
---|
177 | |
---|
178 | //! \name BINARY OPERATORS |
---|
179 | //@{ |
---|
180 | //! |
---|
181 | PolynomialMod2 And(const PolynomialMod2 &b) const; |
---|
182 | //! |
---|
183 | PolynomialMod2 Xor(const PolynomialMod2 &b) const; |
---|
184 | //! |
---|
185 | PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);} |
---|
186 | //! |
---|
187 | PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);} |
---|
188 | //! |
---|
189 | PolynomialMod2 Times(const PolynomialMod2 &b) const; |
---|
190 | //! |
---|
191 | PolynomialMod2 DividedBy(const PolynomialMod2 &b) const; |
---|
192 | //! |
---|
193 | PolynomialMod2 Modulo(const PolynomialMod2 &b) const; |
---|
194 | |
---|
195 | //! |
---|
196 | PolynomialMod2 operator>>(unsigned int n) const; |
---|
197 | //! |
---|
198 | PolynomialMod2 operator<<(unsigned int n) const; |
---|
199 | //@} |
---|
200 | |
---|
201 | //! \name OTHER ARITHMETIC FUNCTIONS |
---|
202 | //@{ |
---|
203 | //! sum modulo 2 of all coefficients |
---|
204 | unsigned int Parity() const; |
---|
205 | |
---|
206 | //! check for irreducibility |
---|
207 | bool IsIrreducible() const; |
---|
208 | |
---|
209 | //! is always zero since we're working modulo 2 |
---|
210 | PolynomialMod2 Doubled() const {return Zero();} |
---|
211 | //! |
---|
212 | PolynomialMod2 Squared() const; |
---|
213 | |
---|
214 | //! only 1 is a unit |
---|
215 | bool IsUnit() const {return Equals(One());} |
---|
216 | //! return inverse if *this is a unit, otherwise return 0 |
---|
217 | PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();} |
---|
218 | |
---|
219 | //! greatest common divisor |
---|
220 | static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n); |
---|
221 | //! calculate multiplicative inverse of *this mod n |
---|
222 | PolynomialMod2 InverseMod(const PolynomialMod2 &) const; |
---|
223 | |
---|
224 | //! calculate r and q such that (a == d*q + r) && (deg(r) < deg(d)) |
---|
225 | static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d); |
---|
226 | //@} |
---|
227 | |
---|
228 | //! \name INPUT/OUTPUT |
---|
229 | //@{ |
---|
230 | //! |
---|
231 | friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a); |
---|
232 | //@} |
---|
233 | |
---|
234 | private: |
---|
235 | friend class GF2NT; |
---|
236 | |
---|
237 | SecWordBlock reg; |
---|
238 | }; |
---|
239 | |
---|
240 | //! |
---|
241 | inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) |
---|
242 | {return a.Equals(b);} |
---|
243 | //! |
---|
244 | inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) |
---|
245 | {return !(a==b);} |
---|
246 | //! compares degree |
---|
247 | inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) |
---|
248 | {return a.Degree() > b.Degree();} |
---|
249 | //! compares degree |
---|
250 | inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) |
---|
251 | {return a.Degree() >= b.Degree();} |
---|
252 | //! compares degree |
---|
253 | inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) |
---|
254 | {return a.Degree() < b.Degree();} |
---|
255 | //! compares degree |
---|
256 | inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) |
---|
257 | {return a.Degree() <= b.Degree();} |
---|
258 | //! |
---|
259 | inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);} |
---|
260 | //! |
---|
261 | inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);} |
---|
262 | //! |
---|
263 | inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);} |
---|
264 | //! |
---|
265 | inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);} |
---|
266 | //! |
---|
267 | inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);} |
---|
268 | //! |
---|
269 | inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);} |
---|
270 | //! |
---|
271 | inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);} |
---|
272 | |
---|
273 | // CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations, |
---|
274 | // but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003 |
---|
275 | CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>; |
---|
276 | CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>; |
---|
277 | CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>; |
---|
278 | CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>; |
---|
279 | CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >; |
---|
280 | |
---|
281 | //! GF(2^n) with Polynomial Basis |
---|
282 | class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> > |
---|
283 | { |
---|
284 | public: |
---|
285 | GF2NP(const PolynomialMod2 &modulus); |
---|
286 | |
---|
287 | virtual GF2NP * Clone() const {return new GF2NP(*this);} |
---|
288 | virtual void DEREncode(BufferedTransformation &bt) const |
---|
289 | {CRYPTOPP_UNUSED(bt); CRYPTOPP_ASSERT(false);} // no ASN.1 syntax yet for general polynomial basis |
---|
290 | |
---|
291 | void DEREncodeElement(BufferedTransformation &out, const Element &a) const; |
---|
292 | void BERDecodeElement(BufferedTransformation &in, Element &a) const; |
---|
293 | |
---|
294 | bool Equal(const Element &a, const Element &b) const |
---|
295 | {CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);} |
---|
296 | |
---|
297 | bool IsUnit(const Element &a) const |
---|
298 | {CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree()); return !!a;} |
---|
299 | |
---|
300 | unsigned int MaxElementBitLength() const |
---|
301 | {return m;} |
---|
302 | |
---|
303 | unsigned int MaxElementByteLength() const |
---|
304 | {return (unsigned int)BitsToBytes(MaxElementBitLength());} |
---|
305 | |
---|
306 | Element SquareRoot(const Element &a) const; |
---|
307 | |
---|
308 | Element HalfTrace(const Element &a) const; |
---|
309 | |
---|
310 | // returns z such that z^2 + z == a |
---|
311 | Element SolveQuadraticEquation(const Element &a) const; |
---|
312 | |
---|
313 | protected: |
---|
314 | unsigned int m; |
---|
315 | }; |
---|
316 | |
---|
317 | //! GF(2^n) with Trinomial Basis |
---|
318 | class CRYPTOPP_DLL GF2NT : public GF2NP |
---|
319 | { |
---|
320 | public: |
---|
321 | // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2 |
---|
322 | GF2NT(unsigned int t0, unsigned int t1, unsigned int t2); |
---|
323 | |
---|
324 | GF2NP * Clone() const {return new GF2NT(*this);} |
---|
325 | void DEREncode(BufferedTransformation &bt) const; |
---|
326 | |
---|
327 | const Element& Multiply(const Element &a, const Element &b) const; |
---|
328 | |
---|
329 | const Element& Square(const Element &a) const |
---|
330 | {return Reduced(a.Squared());} |
---|
331 | |
---|
332 | const Element& MultiplicativeInverse(const Element &a) const; |
---|
333 | |
---|
334 | private: |
---|
335 | const Element& Reduced(const Element &a) const; |
---|
336 | |
---|
337 | unsigned int t0, t1; |
---|
338 | mutable PolynomialMod2 result; |
---|
339 | }; |
---|
340 | |
---|
341 | //! GF(2^n) with Pentanomial Basis |
---|
342 | class CRYPTOPP_DLL GF2NPP : public GF2NP |
---|
343 | { |
---|
344 | public: |
---|
345 | // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4 |
---|
346 | GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4) |
---|
347 | : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t0(t0), t1(t1), t2(t2), t3(t3) {} |
---|
348 | |
---|
349 | GF2NP * Clone() const {return new GF2NPP(*this);} |
---|
350 | void DEREncode(BufferedTransformation &bt) const; |
---|
351 | |
---|
352 | private: |
---|
353 | unsigned int t0, t1, t2, t3; |
---|
354 | }; |
---|
355 | |
---|
356 | // construct new GF2NP from the ASN.1 sequence Characteristic-two |
---|
357 | CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt); |
---|
358 | |
---|
359 | NAMESPACE_END |
---|
360 | |
---|
361 | #ifndef __BORLANDC__ |
---|
362 | NAMESPACE_BEGIN(std) |
---|
363 | template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b) |
---|
364 | { |
---|
365 | a.swap(b); |
---|
366 | } |
---|
367 | NAMESPACE_END |
---|
368 | #endif |
---|
369 | |
---|
370 | #endif |
---|