1 | // algebra.cpp - written and placed in the public domain by Wei Dai |
---|
2 | |
---|
3 | #include "pch.h" |
---|
4 | |
---|
5 | #ifndef CRYPTOPP_ALGEBRA_CPP // SunCC workaround: compiler could cause this file to be included twice |
---|
6 | #define CRYPTOPP_ALGEBRA_CPP |
---|
7 | |
---|
8 | #include "algebra.h" |
---|
9 | #include "integer.h" |
---|
10 | |
---|
11 | #include <vector> |
---|
12 | |
---|
13 | NAMESPACE_BEGIN(CryptoPP) |
---|
14 | |
---|
15 | template <class T> const T& AbstractGroup<T>::Double(const Element &a) const |
---|
16 | { |
---|
17 | return this->Add(a, a); |
---|
18 | } |
---|
19 | |
---|
20 | template <class T> const T& AbstractGroup<T>::Subtract(const Element &a, const Element &b) const |
---|
21 | { |
---|
22 | // make copy of a in case Inverse() overwrites it |
---|
23 | Element a1(a); |
---|
24 | return this->Add(a1, Inverse(b)); |
---|
25 | } |
---|
26 | |
---|
27 | template <class T> T& AbstractGroup<T>::Accumulate(Element &a, const Element &b) const |
---|
28 | { |
---|
29 | return a = this->Add(a, b); |
---|
30 | } |
---|
31 | |
---|
32 | template <class T> T& AbstractGroup<T>::Reduce(Element &a, const Element &b) const |
---|
33 | { |
---|
34 | return a = this->Subtract(a, b); |
---|
35 | } |
---|
36 | |
---|
37 | template <class T> const T& AbstractRing<T>::Square(const Element &a) const |
---|
38 | { |
---|
39 | return this->Multiply(a, a); |
---|
40 | } |
---|
41 | |
---|
42 | template <class T> const T& AbstractRing<T>::Divide(const Element &a, const Element &b) const |
---|
43 | { |
---|
44 | // make copy of a in case MultiplicativeInverse() overwrites it |
---|
45 | Element a1(a); |
---|
46 | return this->Multiply(a1, this->MultiplicativeInverse(b)); |
---|
47 | } |
---|
48 | |
---|
49 | template <class T> const T& AbstractEuclideanDomain<T>::Mod(const Element &a, const Element &b) const |
---|
50 | { |
---|
51 | Element q; |
---|
52 | this->DivisionAlgorithm(result, q, a, b); |
---|
53 | return result; |
---|
54 | } |
---|
55 | |
---|
56 | template <class T> const T& AbstractEuclideanDomain<T>::Gcd(const Element &a, const Element &b) const |
---|
57 | { |
---|
58 | Element g[3]={b, a}; |
---|
59 | unsigned int i0=0, i1=1, i2=2; |
---|
60 | |
---|
61 | while (!this->Equal(g[i1], this->Identity())) |
---|
62 | { |
---|
63 | g[i2] = this->Mod(g[i0], g[i1]); |
---|
64 | unsigned int t = i0; i0 = i1; i1 = i2; i2 = t; |
---|
65 | } |
---|
66 | |
---|
67 | return result = g[i0]; |
---|
68 | } |
---|
69 | |
---|
70 | template <class T> const typename QuotientRing<T>::Element& QuotientRing<T>::MultiplicativeInverse(const Element &a) const |
---|
71 | { |
---|
72 | Element g[3]={m_modulus, a}; |
---|
73 | Element v[3]={m_domain.Identity(), m_domain.MultiplicativeIdentity()}; |
---|
74 | Element y; |
---|
75 | unsigned int i0=0, i1=1, i2=2; |
---|
76 | |
---|
77 | while (!this->Equal(g[i1], this->Identity())) |
---|
78 | { |
---|
79 | // y = g[i0] / g[i1]; |
---|
80 | // g[i2] = g[i0] % g[i1]; |
---|
81 | m_domain.DivisionAlgorithm(g[i2], y, g[i0], g[i1]); |
---|
82 | // v[i2] = v[i0] - (v[i1] * y); |
---|
83 | v[i2] = m_domain.Subtract(v[i0], m_domain.Multiply(v[i1], y)); |
---|
84 | unsigned int t = i0; i0 = i1; i1 = i2; i2 = t; |
---|
85 | } |
---|
86 | |
---|
87 | return m_domain.IsUnit(g[i0]) ? m_domain.Divide(v[i0], g[i0]) : m_domain.Identity(); |
---|
88 | } |
---|
89 | |
---|
90 | template <class T> T AbstractGroup<T>::ScalarMultiply(const Element &base, const Integer &exponent) const |
---|
91 | { |
---|
92 | Element result; |
---|
93 | this->SimultaneousMultiply(&result, base, &exponent, 1); |
---|
94 | return result; |
---|
95 | } |
---|
96 | |
---|
97 | template <class T> T AbstractGroup<T>::CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
---|
98 | { |
---|
99 | const unsigned expLen = STDMAX(e1.BitCount(), e2.BitCount()); |
---|
100 | if (expLen==0) |
---|
101 | return this->Identity(); |
---|
102 | |
---|
103 | const unsigned w = (expLen <= 46 ? 1 : (expLen <= 260 ? 2 : 3)); |
---|
104 | const unsigned tableSize = 1<<w; |
---|
105 | std::vector<Element> powerTable(tableSize << w); |
---|
106 | |
---|
107 | powerTable[1] = x; |
---|
108 | powerTable[tableSize] = y; |
---|
109 | if (w==1) |
---|
110 | powerTable[3] = this->Add(x,y); |
---|
111 | else |
---|
112 | { |
---|
113 | powerTable[2] = this->Double(x); |
---|
114 | powerTable[2*tableSize] = this->Double(y); |
---|
115 | |
---|
116 | unsigned i, j; |
---|
117 | |
---|
118 | for (i=3; i<tableSize; i+=2) |
---|
119 | powerTable[i] = Add(powerTable[i-2], powerTable[2]); |
---|
120 | for (i=1; i<tableSize; i+=2) |
---|
121 | for (j=i+tableSize; j<(tableSize<<w); j+=tableSize) |
---|
122 | powerTable[j] = Add(powerTable[j-tableSize], y); |
---|
123 | |
---|
124 | for (i=3*tableSize; i<(tableSize<<w); i+=2*tableSize) |
---|
125 | powerTable[i] = Add(powerTable[i-2*tableSize], powerTable[2*tableSize]); |
---|
126 | for (i=tableSize; i<(tableSize<<w); i+=2*tableSize) |
---|
127 | for (j=i+2; j<i+tableSize; j+=2) |
---|
128 | powerTable[j] = Add(powerTable[j-1], x); |
---|
129 | } |
---|
130 | |
---|
131 | Element result; |
---|
132 | unsigned power1 = 0, power2 = 0, prevPosition = expLen-1; |
---|
133 | bool firstTime = true; |
---|
134 | |
---|
135 | for (int i = expLen-1; i>=0; i--) |
---|
136 | { |
---|
137 | power1 = 2*power1 + e1.GetBit(i); |
---|
138 | power2 = 2*power2 + e2.GetBit(i); |
---|
139 | |
---|
140 | if (i==0 || 2*power1 >= tableSize || 2*power2 >= tableSize) |
---|
141 | { |
---|
142 | unsigned squaresBefore = prevPosition-i; |
---|
143 | unsigned squaresAfter = 0; |
---|
144 | prevPosition = i; |
---|
145 | while ((power1 || power2) && power1%2 == 0 && power2%2==0) |
---|
146 | { |
---|
147 | power1 /= 2; |
---|
148 | power2 /= 2; |
---|
149 | squaresBefore--; |
---|
150 | squaresAfter++; |
---|
151 | } |
---|
152 | if (firstTime) |
---|
153 | { |
---|
154 | result = powerTable[(power2<<w) + power1]; |
---|
155 | firstTime = false; |
---|
156 | } |
---|
157 | else |
---|
158 | { |
---|
159 | while (squaresBefore--) |
---|
160 | result = this->Double(result); |
---|
161 | if (power1 || power2) |
---|
162 | Accumulate(result, powerTable[(power2<<w) + power1]); |
---|
163 | } |
---|
164 | while (squaresAfter--) |
---|
165 | result = this->Double(result); |
---|
166 | power1 = power2 = 0; |
---|
167 | } |
---|
168 | } |
---|
169 | return result; |
---|
170 | } |
---|
171 | |
---|
172 | template <class Element, class Iterator> Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end) |
---|
173 | { |
---|
174 | if (end-begin == 1) |
---|
175 | return group.ScalarMultiply(begin->base, begin->exponent); |
---|
176 | else if (end-begin == 2) |
---|
177 | return group.CascadeScalarMultiply(begin->base, begin->exponent, (begin+1)->base, (begin+1)->exponent); |
---|
178 | else |
---|
179 | { |
---|
180 | Integer q, t; |
---|
181 | Iterator last = end; |
---|
182 | --last; |
---|
183 | |
---|
184 | std::make_heap(begin, end); |
---|
185 | std::pop_heap(begin, end); |
---|
186 | |
---|
187 | while (!!begin->exponent) |
---|
188 | { |
---|
189 | // last->exponent is largest exponent, begin->exponent is next largest |
---|
190 | t = last->exponent; |
---|
191 | Integer::Divide(last->exponent, q, t, begin->exponent); |
---|
192 | |
---|
193 | if (q == Integer::One()) |
---|
194 | group.Accumulate(begin->base, last->base); // avoid overhead of ScalarMultiply() |
---|
195 | else |
---|
196 | group.Accumulate(begin->base, group.ScalarMultiply(last->base, q)); |
---|
197 | |
---|
198 | std::push_heap(begin, end); |
---|
199 | std::pop_heap(begin, end); |
---|
200 | } |
---|
201 | |
---|
202 | return group.ScalarMultiply(last->base, last->exponent); |
---|
203 | } |
---|
204 | } |
---|
205 | |
---|
206 | struct WindowSlider |
---|
207 | { |
---|
208 | WindowSlider(const Integer &expIn, bool fastNegate, unsigned int windowSizeIn=0) |
---|
209 | : exp(expIn), windowModulus(Integer::One()), windowSize(windowSizeIn), windowBegin(0), expWindow(0) |
---|
210 | , fastNegate(fastNegate), negateNext(false), firstTime(true), finished(false) |
---|
211 | { |
---|
212 | if (windowSize == 0) |
---|
213 | { |
---|
214 | unsigned int expLen = exp.BitCount(); |
---|
215 | windowSize = expLen <= 17 ? 1 : (expLen <= 24 ? 2 : (expLen <= 70 ? 3 : (expLen <= 197 ? 4 : (expLen <= 539 ? 5 : (expLen <= 1434 ? 6 : 7))))); |
---|
216 | } |
---|
217 | windowModulus <<= windowSize; |
---|
218 | } |
---|
219 | |
---|
220 | void FindNextWindow() |
---|
221 | { |
---|
222 | unsigned int expLen = exp.WordCount() * WORD_BITS; |
---|
223 | unsigned int skipCount = firstTime ? 0 : windowSize; |
---|
224 | firstTime = false; |
---|
225 | while (!exp.GetBit(skipCount)) |
---|
226 | { |
---|
227 | if (skipCount >= expLen) |
---|
228 | { |
---|
229 | finished = true; |
---|
230 | return; |
---|
231 | } |
---|
232 | skipCount++; |
---|
233 | } |
---|
234 | |
---|
235 | exp >>= skipCount; |
---|
236 | windowBegin += skipCount; |
---|
237 | expWindow = word32(exp % (word(1) << windowSize)); |
---|
238 | |
---|
239 | if (fastNegate && exp.GetBit(windowSize)) |
---|
240 | { |
---|
241 | negateNext = true; |
---|
242 | expWindow = (word32(1) << windowSize) - expWindow; |
---|
243 | exp += windowModulus; |
---|
244 | } |
---|
245 | else |
---|
246 | negateNext = false; |
---|
247 | } |
---|
248 | |
---|
249 | Integer exp, windowModulus; |
---|
250 | unsigned int windowSize, windowBegin; |
---|
251 | word32 expWindow; |
---|
252 | bool fastNegate, negateNext, firstTime, finished; |
---|
253 | }; |
---|
254 | |
---|
255 | template <class T> |
---|
256 | void AbstractGroup<T>::SimultaneousMultiply(T *results, const T &base, const Integer *expBegin, unsigned int expCount) const |
---|
257 | { |
---|
258 | std::vector<std::vector<Element> > buckets(expCount); |
---|
259 | std::vector<WindowSlider> exponents; |
---|
260 | exponents.reserve(expCount); |
---|
261 | unsigned int i; |
---|
262 | |
---|
263 | for (i=0; i<expCount; i++) |
---|
264 | { |
---|
265 | CRYPTOPP_ASSERT(expBegin->NotNegative()); |
---|
266 | exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 0)); |
---|
267 | exponents[i].FindNextWindow(); |
---|
268 | buckets[i].resize(((size_t) 1) << (exponents[i].windowSize-1), Identity()); |
---|
269 | } |
---|
270 | |
---|
271 | unsigned int expBitPosition = 0; |
---|
272 | Element g = base; |
---|
273 | bool notDone = true; |
---|
274 | |
---|
275 | while (notDone) |
---|
276 | { |
---|
277 | notDone = false; |
---|
278 | for (i=0; i<expCount; i++) |
---|
279 | { |
---|
280 | if (!exponents[i].finished && expBitPosition == exponents[i].windowBegin) |
---|
281 | { |
---|
282 | Element &bucket = buckets[i][exponents[i].expWindow/2]; |
---|
283 | if (exponents[i].negateNext) |
---|
284 | Accumulate(bucket, Inverse(g)); |
---|
285 | else |
---|
286 | Accumulate(bucket, g); |
---|
287 | exponents[i].FindNextWindow(); |
---|
288 | } |
---|
289 | notDone = notDone || !exponents[i].finished; |
---|
290 | } |
---|
291 | |
---|
292 | if (notDone) |
---|
293 | { |
---|
294 | g = Double(g); |
---|
295 | expBitPosition++; |
---|
296 | } |
---|
297 | } |
---|
298 | |
---|
299 | for (i=0; i<expCount; i++) |
---|
300 | { |
---|
301 | Element &r = *results++; |
---|
302 | r = buckets[i][buckets[i].size()-1]; |
---|
303 | if (buckets[i].size() > 1) |
---|
304 | { |
---|
305 | for (int j = (int)buckets[i].size()-2; j >= 1; j--) |
---|
306 | { |
---|
307 | Accumulate(buckets[i][j], buckets[i][j+1]); |
---|
308 | Accumulate(r, buckets[i][j]); |
---|
309 | } |
---|
310 | Accumulate(buckets[i][0], buckets[i][1]); |
---|
311 | r = Add(Double(r), buckets[i][0]); |
---|
312 | } |
---|
313 | } |
---|
314 | } |
---|
315 | |
---|
316 | template <class T> T AbstractRing<T>::Exponentiate(const Element &base, const Integer &exponent) const |
---|
317 | { |
---|
318 | Element result; |
---|
319 | SimultaneousExponentiate(&result, base, &exponent, 1); |
---|
320 | return result; |
---|
321 | } |
---|
322 | |
---|
323 | template <class T> T AbstractRing<T>::CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
---|
324 | { |
---|
325 | return MultiplicativeGroup().AbstractGroup<T>::CascadeScalarMultiply(x, e1, y, e2); |
---|
326 | } |
---|
327 | |
---|
328 | template <class Element, class Iterator> Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end) |
---|
329 | { |
---|
330 | return GeneralCascadeMultiplication<Element>(ring.MultiplicativeGroup(), begin, end); |
---|
331 | } |
---|
332 | |
---|
333 | template <class T> |
---|
334 | void AbstractRing<T>::SimultaneousExponentiate(T *results, const T &base, const Integer *exponents, unsigned int expCount) const |
---|
335 | { |
---|
336 | MultiplicativeGroup().AbstractGroup<T>::SimultaneousMultiply(results, base, exponents, expCount); |
---|
337 | } |
---|
338 | |
---|
339 | NAMESPACE_END |
---|
340 | |
---|
341 | #endif |
---|