1 | |
---|
2 | // misc.h - written and placed in the public domain by Wei Dai |
---|
3 | |
---|
4 | //! \file misc.h |
---|
5 | //! \brief Utility functions for the Crypto++ library. |
---|
6 | |
---|
7 | #ifndef CRYPTOPP_MISC_H |
---|
8 | #define CRYPTOPP_MISC_H |
---|
9 | |
---|
10 | #include "config.h" |
---|
11 | |
---|
12 | #if !CRYPTOPP_DOXYGEN_PROCESSING |
---|
13 | |
---|
14 | #if CRYPTOPP_MSC_VERSION |
---|
15 | # pragma warning(push) |
---|
16 | # pragma warning(disable: 4146 4514) |
---|
17 | # if (CRYPTOPP_MSC_VERSION >= 1400) |
---|
18 | # pragma warning(disable: 6326) |
---|
19 | # endif |
---|
20 | #endif |
---|
21 | |
---|
22 | #include "cryptlib.h" |
---|
23 | #include "stdcpp.h" |
---|
24 | #include "smartptr.h" |
---|
25 | |
---|
26 | #ifdef _MSC_VER |
---|
27 | #if _MSC_VER >= 1400 |
---|
28 | // VC2005 workaround: disable declarations that conflict with winnt.h |
---|
29 | #define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1 |
---|
30 | #define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2 |
---|
31 | #define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3 |
---|
32 | #define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4 |
---|
33 | #include <intrin.h> |
---|
34 | #undef _interlockedbittestandset |
---|
35 | #undef _interlockedbittestandreset |
---|
36 | #undef _interlockedbittestandset64 |
---|
37 | #undef _interlockedbittestandreset64 |
---|
38 | #define CRYPTOPP_FAST_ROTATE(x) 1 |
---|
39 | #elif _MSC_VER >= 1300 |
---|
40 | #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64) |
---|
41 | #else |
---|
42 | #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) |
---|
43 | #endif |
---|
44 | #elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \ |
---|
45 | (defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM))) |
---|
46 | #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32) |
---|
47 | #elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions |
---|
48 | #define CRYPTOPP_FAST_ROTATE(x) 1 |
---|
49 | #else |
---|
50 | #define CRYPTOPP_FAST_ROTATE(x) 0 |
---|
51 | #endif |
---|
52 | |
---|
53 | #ifdef __BORLANDC__ |
---|
54 | #include <mem.h> |
---|
55 | #include <stdlib.h> |
---|
56 | #endif |
---|
57 | |
---|
58 | #if defined(__GNUC__) && defined(__linux__) |
---|
59 | #define CRYPTOPP_BYTESWAP_AVAILABLE |
---|
60 | #include <byteswap.h> |
---|
61 | #endif |
---|
62 | |
---|
63 | #if defined(__GNUC__) && defined(__BMI__) |
---|
64 | # include <immintrin.h> |
---|
65 | # if defined(__clang__) |
---|
66 | # ifndef _tzcnt_u32 |
---|
67 | # define _tzcnt_u32(x) __tzcnt_u32(x) |
---|
68 | # endif |
---|
69 | # ifndef _blsr_u32 |
---|
70 | # define _blsr_u32(x) __blsr_u32(x) |
---|
71 | # endif |
---|
72 | # ifdef __x86_64__ |
---|
73 | # ifndef _tzcnt_u64 |
---|
74 | # define _tzcnt_u64(x) __tzcnt_u64(x) |
---|
75 | # endif |
---|
76 | # ifndef _blsr_u64 |
---|
77 | # define _blsr_u64(x) __blsr_u64(x) |
---|
78 | # endif |
---|
79 | # endif // x86_64 |
---|
80 | # endif // Clang |
---|
81 | #endif // GNUC and BMI |
---|
82 | |
---|
83 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
---|
84 | |
---|
85 | #if CRYPTOPP_DOXYGEN_PROCESSING |
---|
86 | //! \brief The maximum value of a machine word |
---|
87 | //! \details SIZE_MAX provides the maximum value of a machine word. The value is |
---|
88 | //! \p 0xffffffff on 32-bit machines, and \p 0xffffffffffffffff on 64-bit machines. |
---|
89 | //! Internally, SIZE_MAX is defined as __SIZE_MAX__ if __SIZE_MAX__ is defined. If not |
---|
90 | //! defined, then SIZE_T_MAX is tried. If neither __SIZE_MAX__ nor SIZE_T_MAX is |
---|
91 | //! is defined, the library uses std::numeric_limits<size_t>::max(). The library |
---|
92 | //! prefers __SIZE_MAX__ because its a constexpr that is optimized well |
---|
93 | //! by all compilers. std::numeric_limits<size_t>::max() is \a not a constexpr, |
---|
94 | //! and it is \a not always optimized well. |
---|
95 | # define SIZE_MAX ... |
---|
96 | #else |
---|
97 | // Its amazing portability problems still plague this simple concept in 2015. |
---|
98 | // http://stackoverflow.com/questions/30472731/which-c-standard-header-defines-size-max |
---|
99 | // Avoid NOMINMAX macro on Windows. http://support.microsoft.com/en-us/kb/143208 |
---|
100 | #ifndef SIZE_MAX |
---|
101 | # if defined(__SIZE_MAX__) && (__SIZE_MAX__ > 0) |
---|
102 | # define SIZE_MAX __SIZE_MAX__ |
---|
103 | # elif defined(SIZE_T_MAX) && (SIZE_T_MAX > 0) |
---|
104 | # define SIZE_MAX SIZE_T_MAX |
---|
105 | # else |
---|
106 | # define SIZE_MAX ((std::numeric_limits<size_t>::max)()) |
---|
107 | # endif |
---|
108 | #endif |
---|
109 | |
---|
110 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
---|
111 | |
---|
112 | NAMESPACE_BEGIN(CryptoPP) |
---|
113 | |
---|
114 | // Forward declaration for IntToString specialization |
---|
115 | class Integer; |
---|
116 | |
---|
117 | // ************** compile-time assertion *************** |
---|
118 | |
---|
119 | #if CRYPTOPP_DOXYGEN_PROCESSING |
---|
120 | //! \brief Compile time assertion |
---|
121 | //! \param expr the expression to evaluate |
---|
122 | //! \details Asserts the expression expr though a dummy struct. |
---|
123 | #define CRYPTOPP_COMPILE_ASSERT(expr) { ... } |
---|
124 | #else // CRYPTOPP_DOXYGEN_PROCESSING |
---|
125 | template <bool b> |
---|
126 | struct CompileAssert |
---|
127 | { |
---|
128 | static char dummy[2*b-1]; |
---|
129 | }; |
---|
130 | //! \endif |
---|
131 | |
---|
132 | #define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__) |
---|
133 | #if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS) |
---|
134 | #define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) |
---|
135 | #else |
---|
136 | # if defined(__GNUC__) |
---|
137 | # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \ |
---|
138 | static CompileAssert<(assertion)> \ |
---|
139 | CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) __attribute__ ((unused)) |
---|
140 | # else |
---|
141 | # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \ |
---|
142 | static CompileAssert<(assertion)> \ |
---|
143 | CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) |
---|
144 | # endif // __GNUC__ |
---|
145 | #endif |
---|
146 | #define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y) |
---|
147 | #define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y |
---|
148 | |
---|
149 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
---|
150 | |
---|
151 | // ************** count elements in an array *************** |
---|
152 | |
---|
153 | #if CRYPTOPP_DOXYGEN_PROCESSING |
---|
154 | //! \brief Counts elements in an array |
---|
155 | //! \param arr an array of elements |
---|
156 | //! \details COUNTOF counts elements in an array. On Windows COUNTOF(x) is defined |
---|
157 | //! to <tt>_countof(x)</tt> to ensure correct results for pointers. |
---|
158 | //! \note COUNTOF does not produce correct results with pointers, and an array must be used. |
---|
159 | //! <tt>sizeof(x)/sizeof(x[0])</tt> suffers the same problem. The risk is eliminated by using |
---|
160 | //! <tt>_countof(x)</tt> on Windows. Windows will provide the immunity for other platforms. |
---|
161 | # define COUNTOF(arr) |
---|
162 | #else |
---|
163 | // VS2005 added _countof |
---|
164 | #ifndef COUNTOF |
---|
165 | # if defined(_MSC_VER) && (_MSC_VER >= 1400) |
---|
166 | # define COUNTOF(x) _countof(x) |
---|
167 | # else |
---|
168 | # define COUNTOF(x) (sizeof(x)/sizeof(x[0])) |
---|
169 | # endif |
---|
170 | #endif // COUNTOF |
---|
171 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
---|
172 | |
---|
173 | // ************** misc classes *************** |
---|
174 | |
---|
175 | //! \brief An Empty class |
---|
176 | //! \details The Empty class can be used as a template parameter <tt>BASE</tt> when no base class exists. |
---|
177 | class CRYPTOPP_DLL Empty |
---|
178 | { |
---|
179 | }; |
---|
180 | |
---|
181 | #if !CRYPTOPP_DOXYGEN_PROCESSING |
---|
182 | template <class BASE1, class BASE2> |
---|
183 | class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2 |
---|
184 | { |
---|
185 | }; |
---|
186 | |
---|
187 | template <class BASE1, class BASE2, class BASE3> |
---|
188 | class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3 |
---|
189 | { |
---|
190 | }; |
---|
191 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
---|
192 | |
---|
193 | //! \class ObjectHolder |
---|
194 | //! \tparam the class or type |
---|
195 | //! \brief Uses encapsulation to hide an object in derived classes |
---|
196 | //! \details The object T is declared as protected. |
---|
197 | template <class T> |
---|
198 | class ObjectHolder |
---|
199 | { |
---|
200 | protected: |
---|
201 | T m_object; |
---|
202 | }; |
---|
203 | |
---|
204 | //! \class NotCopyable |
---|
205 | //! \brief Ensures an object is not copyable |
---|
206 | //! \details NotCopyable ensures an object is not copyable by making the |
---|
207 | //! copy constructor and assignment operator private. Deleters are not |
---|
208 | //! used under C++11. |
---|
209 | //! \sa Clonable class |
---|
210 | class NotCopyable |
---|
211 | { |
---|
212 | public: |
---|
213 | NotCopyable() {} |
---|
214 | private: |
---|
215 | NotCopyable(const NotCopyable &); |
---|
216 | void operator=(const NotCopyable &); |
---|
217 | }; |
---|
218 | |
---|
219 | //! \class NewObject |
---|
220 | //! \brief An object factory function |
---|
221 | //! \details NewObject overloads operator()(). |
---|
222 | template <class T> |
---|
223 | struct NewObject |
---|
224 | { |
---|
225 | T* operator()() const {return new T;} |
---|
226 | }; |
---|
227 | |
---|
228 | #if CRYPTOPP_DOXYGEN_PROCESSING |
---|
229 | //! \brief A memory barrier |
---|
230 | //! \details MEMORY_BARRIER attempts to ensure reads and writes are completed |
---|
231 | //! in the absence of a language synchronization point. It is used by the |
---|
232 | //! Singleton class if the compiler supports it. The barrier is provided at the |
---|
233 | //! customary places in a double-checked initialization. |
---|
234 | //! \details Internally, MEMORY_BARRIER uses <tt>std::atomic_thread_fence</tt> if |
---|
235 | //! C++11 atomics are available. Otherwise, <tt>intrinsic(_ReadWriteBarrier)</tt>, |
---|
236 | //! <tt>_ReadWriteBarrier()</tt> or <tt>__asm__("" ::: "memory")</tt> is used. |
---|
237 | #define MEMORY_BARRIER ... |
---|
238 | #else |
---|
239 | #if defined(CRYPTOPP_CXX11_ATOMICS) |
---|
240 | # define MEMORY_BARRIER() std::atomic_thread_fence(std::memory_order_acq_rel) |
---|
241 | #elif (_MSC_VER >= 1400) |
---|
242 | # pragma intrinsic(_ReadWriteBarrier) |
---|
243 | # define MEMORY_BARRIER() _ReadWriteBarrier() |
---|
244 | #elif defined(__INTEL_COMPILER) |
---|
245 | # define MEMORY_BARRIER() __memory_barrier() |
---|
246 | #elif defined(__GNUC__) || defined(__clang__) |
---|
247 | # define MEMORY_BARRIER() __asm__ __volatile__ ("" ::: "memory") |
---|
248 | #else |
---|
249 | # define MEMORY_BARRIER() |
---|
250 | #endif |
---|
251 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
---|
252 | |
---|
253 | //! \brief Restricts the instantiation of a class to one static object without locks |
---|
254 | //! \tparam T the class or type |
---|
255 | //! \tparam F the object factory for T |
---|
256 | //! \tparam instance the initiali instance count |
---|
257 | //! \details This class safely initializes a static object in a multithreaded environment. For C++03 |
---|
258 | //! and below it will do so without using locks for portability. If two threads call Ref() at the same |
---|
259 | //! time, they may get back different references, and one object may end up being memory leaked. This |
---|
260 | //! is by design and it avoids a subltle initialization problem ina multithreaded environment with thread |
---|
261 | //! local storage on early Windows platforms, like Windows XP and Windows 2003. |
---|
262 | //! \details For C++11 and above, a standard double-checked locking pattern with thread fences |
---|
263 | //! are used. The locks and fences are standard and do not hinder portability. |
---|
264 | //! \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked |
---|
265 | //! Locking is Fixed In C++11</A> |
---|
266 | template <class T, class F = NewObject<T>, int instance=0> |
---|
267 | class Singleton |
---|
268 | { |
---|
269 | public: |
---|
270 | Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {} |
---|
271 | |
---|
272 | // prevent this function from being inlined |
---|
273 | CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const; |
---|
274 | |
---|
275 | private: |
---|
276 | F m_objectFactory; |
---|
277 | }; |
---|
278 | |
---|
279 | //! \brief Return a reference to the inner Singleton object |
---|
280 | //! \details Ref() is used to create the object using the object factory. The |
---|
281 | //! object is only created once with the limitations discussed in the class documentation. |
---|
282 | //! \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking is Fixed In C++11</A> |
---|
283 | #if defined(CRYPTOPP_CXX11_ATOMICS) && defined(CRYPTOPP_CXX11_SYNCHRONIZATION) |
---|
284 | template <class T, class F, int instance> |
---|
285 | const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const |
---|
286 | { |
---|
287 | static std::mutex s_mutex; |
---|
288 | static std::atomic<T*> s_pObject; |
---|
289 | |
---|
290 | T *p = s_pObject.load(std::memory_order_relaxed); |
---|
291 | std::atomic_thread_fence(std::memory_order_acquire); |
---|
292 | |
---|
293 | if (p) |
---|
294 | return *p; |
---|
295 | |
---|
296 | std::lock_guard<std::mutex> lock(s_mutex); |
---|
297 | p = s_pObject.load(std::memory_order_relaxed); |
---|
298 | std::atomic_thread_fence(std::memory_order_acquire); |
---|
299 | |
---|
300 | if (p) |
---|
301 | return *p; |
---|
302 | |
---|
303 | T *newObject = m_objectFactory(); |
---|
304 | s_pObject.store(newObject, std::memory_order_relaxed); |
---|
305 | std::atomic_thread_fence(std::memory_order_release); |
---|
306 | |
---|
307 | return *newObject; |
---|
308 | } |
---|
309 | #else |
---|
310 | template <class T, class F, int instance> |
---|
311 | const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const |
---|
312 | { |
---|
313 | static volatile simple_ptr<T> s_pObject; |
---|
314 | T *p = s_pObject.m_p; |
---|
315 | MEMORY_BARRIER(); |
---|
316 | |
---|
317 | if (p) |
---|
318 | return *p; |
---|
319 | |
---|
320 | T *newObject = m_objectFactory(); |
---|
321 | p = s_pObject.m_p; |
---|
322 | MEMORY_BARRIER(); |
---|
323 | |
---|
324 | if (p) |
---|
325 | { |
---|
326 | delete newObject; |
---|
327 | return *p; |
---|
328 | } |
---|
329 | |
---|
330 | s_pObject.m_p = newObject; |
---|
331 | MEMORY_BARRIER(); |
---|
332 | |
---|
333 | return *newObject; |
---|
334 | } |
---|
335 | #endif |
---|
336 | |
---|
337 | // ************** misc functions *************** |
---|
338 | |
---|
339 | #if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) || defined(CRYPTOPP_WANT_SECURE_LIB) |
---|
340 | |
---|
341 | //! \brief Bounds checking replacement for memcpy() |
---|
342 | //! \param dest pointer to the desination memory block |
---|
343 | //! \param sizeInBytes the size of the desination memory block, in bytes |
---|
344 | //! \param src pointer to the source memory block |
---|
345 | //! \param count the size of the source memory block, in bytes |
---|
346 | //! \throws InvalidArgument |
---|
347 | //! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially |
---|
348 | //! unsafe functions like memcpy(), strcpy() and memmove(). However, |
---|
349 | //! not all standard libraries provides them, like Glibc. The library's |
---|
350 | //! memcpy_s() is a near-drop in replacement. Its only a near-replacement |
---|
351 | //! because the library's version throws an InvalidArgument on a bounds violation. |
---|
352 | //! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__. |
---|
353 | //! If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library |
---|
354 | //! makes memcpy_s() and memmove_s() available. The library will also optionally |
---|
355 | //! make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined. |
---|
356 | //! <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default. |
---|
357 | //! \details memcpy_s() will assert the pointers src and dest are not NULL |
---|
358 | //! in debug builds. Passing NULL for either pointer is undefined behavior. |
---|
359 | inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count) |
---|
360 | { |
---|
361 | // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55 |
---|
362 | |
---|
363 | // Pointers must be valid; otherwise undefined behavior |
---|
364 | CRYPTOPP_ASSERT(dest != NULL); CRYPTOPP_ASSERT(src != NULL); |
---|
365 | // Destination buffer must be large enough to satsify request |
---|
366 | CRYPTOPP_ASSERT(sizeInBytes >= count); |
---|
367 | if (count > sizeInBytes) |
---|
368 | throw InvalidArgument("memcpy_s: buffer overflow"); |
---|
369 | |
---|
370 | #if CRYPTOPP_MSC_VERSION |
---|
371 | # pragma warning(push) |
---|
372 | # pragma warning(disable: 4996) |
---|
373 | # if (CRYPTOPP_MSC_VERSION >= 1400) |
---|
374 | # pragma warning(disable: 6386) |
---|
375 | # endif |
---|
376 | #endif |
---|
377 | memcpy(dest, src, count); |
---|
378 | #if CRYPTOPP_MSC_VERSION |
---|
379 | # pragma warning(pop) |
---|
380 | #endif |
---|
381 | } |
---|
382 | |
---|
383 | //! \brief Bounds checking replacement for memmove() |
---|
384 | //! \param dest pointer to the desination memory block |
---|
385 | //! \param sizeInBytes the size of the desination memory block, in bytes |
---|
386 | //! \param src pointer to the source memory block |
---|
387 | //! \param count the size of the source memory block, in bytes |
---|
388 | //! \throws InvalidArgument |
---|
389 | //! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially |
---|
390 | //! unsafe functions like memcpy(), strcpy() and memmove(). However, |
---|
391 | //! not all standard libraries provides them, like Glibc. The library's |
---|
392 | //! memmove_s() is a near-drop in replacement. Its only a near-replacement |
---|
393 | //! because the library's version throws an InvalidArgument on a bounds violation. |
---|
394 | //! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__. |
---|
395 | //! If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library |
---|
396 | //! makes memcpy_s() and memmove_s() available. The library will also optionally |
---|
397 | //! make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined. |
---|
398 | //! <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default. |
---|
399 | //! \details memmove_s() will assert the pointers src and dest are not NULL |
---|
400 | //! in debug builds. Passing NULL for either pointer is undefined behavior. |
---|
401 | inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count) |
---|
402 | { |
---|
403 | // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55 |
---|
404 | |
---|
405 | // Pointers must be valid; otherwise undefined behavior |
---|
406 | CRYPTOPP_ASSERT(dest != NULL); CRYPTOPP_ASSERT(src != NULL); |
---|
407 | // Destination buffer must be large enough to satsify request |
---|
408 | CRYPTOPP_ASSERT(sizeInBytes >= count); |
---|
409 | if (count > sizeInBytes) |
---|
410 | throw InvalidArgument("memmove_s: buffer overflow"); |
---|
411 | |
---|
412 | #if CRYPTOPP_MSC_VERSION |
---|
413 | # pragma warning(push) |
---|
414 | # pragma warning(disable: 4996) |
---|
415 | # if (CRYPTOPP_MSC_VERSION >= 1400) |
---|
416 | # pragma warning(disable: 6386) |
---|
417 | # endif |
---|
418 | #endif |
---|
419 | memmove(dest, src, count); |
---|
420 | #if CRYPTOPP_MSC_VERSION |
---|
421 | # pragma warning(pop) |
---|
422 | #endif |
---|
423 | } |
---|
424 | |
---|
425 | #if __BORLANDC__ >= 0x620 |
---|
426 | // C++Builder 2010 workaround: can't use std::memcpy_s because it doesn't allow 0 lengths |
---|
427 | # define memcpy_s CryptoPP::memcpy_s |
---|
428 | # define memmove_s CryptoPP::memmove_s |
---|
429 | #endif |
---|
430 | |
---|
431 | #endif // __STDC_WANT_SECURE_LIB__ |
---|
432 | |
---|
433 | //! \brief Swaps two variables which are arrays |
---|
434 | //! \param a the first value |
---|
435 | //! \param b the second value |
---|
436 | //! \details C++03 does not provide support for <tt>std::swap(__m128i a, __m128i b)</tt> |
---|
437 | //! because <tt>__m128i</tt> is an <tt>unsigned long long[2]</tt>. Most compilers |
---|
438 | //! support it out of the box, but Sun Studio C++ compilers 12.2 and 12.3 do not. |
---|
439 | //! \sa <A HREF="http://stackoverflow.com/q/38417413">How to swap two __m128i variables |
---|
440 | //! in C++03 given its an opaque type and an array?</A> on Stack Overflow. |
---|
441 | template <class T> |
---|
442 | inline void vec_swap(T& a, T& b) |
---|
443 | { |
---|
444 | T t; |
---|
445 | t=a, a=b, b=t; |
---|
446 | } |
---|
447 | |
---|
448 | //! \brief Memory block initializer and eraser that attempts to survive optimizations |
---|
449 | //! \param ptr pointer to the memory block being written |
---|
450 | //! \param value the integer value to write for each byte |
---|
451 | //! \param num the size of the source memory block, in bytes |
---|
452 | //! \details Internally the function calls memset with the value value, and receives the |
---|
453 | //! return value from memset as a <tt>volatile</tt> pointer. |
---|
454 | inline void * memset_z(void *ptr, int value, size_t num) |
---|
455 | { |
---|
456 | // avoid extranous warning on GCC 4.3.2 Ubuntu 8.10 |
---|
457 | #if CRYPTOPP_GCC_VERSION >= 30001 |
---|
458 | if (__builtin_constant_p(num) && num==0) |
---|
459 | return ptr; |
---|
460 | #endif |
---|
461 | volatile void* x = memset(ptr, value, num); |
---|
462 | return const_cast<void*>(x); |
---|
463 | } |
---|
464 | |
---|
465 | //! \brief Replacement function for std::min |
---|
466 | //! \param a the first value |
---|
467 | //! \param b the second value |
---|
468 | //! \returns the minimum value based on a comparison of <tt>b \< a</tt> using <tt>operator\<</tt> |
---|
469 | //! \details STDMIN was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0 |
---|
470 | template <class T> inline const T& STDMIN(const T& a, const T& b) |
---|
471 | { |
---|
472 | return b < a ? b : a; |
---|
473 | } |
---|
474 | |
---|
475 | //! \brief Replacement function for std::max |
---|
476 | //! \param a the first value |
---|
477 | //! \param b the second value |
---|
478 | //! \returns the minimum value based on a comparison of <tt>a \< b</tt> using <tt>operator\<</tt> |
---|
479 | //! \details STDMAX was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0 |
---|
480 | template <class T> inline const T& STDMAX(const T& a, const T& b) |
---|
481 | { |
---|
482 | // can't use std::min or std::max in MSVC60 or Cygwin 1.1.0 |
---|
483 | return a < b ? b : a; |
---|
484 | } |
---|
485 | |
---|
486 | #if CRYPTOPP_MSC_VERSION |
---|
487 | # pragma warning(push) |
---|
488 | # pragma warning(disable: 4389) |
---|
489 | #endif |
---|
490 | |
---|
491 | #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE |
---|
492 | # pragma GCC diagnostic push |
---|
493 | # pragma GCC diagnostic ignored "-Wsign-compare" |
---|
494 | # if (CRYPTOPP_LLVM_CLANG_VERSION >= 20800) || (CRYPTOPP_APPLE_CLANG_VERSION >= 30000) |
---|
495 | # pragma GCC diagnostic ignored "-Wtautological-compare" |
---|
496 | # elif (CRYPTOPP_GCC_VERSION >= 40300) |
---|
497 | # pragma GCC diagnostic ignored "-Wtype-limits" |
---|
498 | # endif |
---|
499 | #endif |
---|
500 | |
---|
501 | //! \brief Safe comparison of values that could be neagtive and incorrectly promoted |
---|
502 | //! \param a the first value |
---|
503 | //! \param b the second value |
---|
504 | //! \returns the minimum value based on a comparison a and b using <tt>operator<</tt>. |
---|
505 | //! \details The comparison <tt>b \< a</tt> is performed and the value returned is a's type T1. |
---|
506 | template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b) |
---|
507 | { |
---|
508 | CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0)); |
---|
509 | if (sizeof(T1)<=sizeof(T2)) |
---|
510 | return b < (T2)a ? (T1)b : a; |
---|
511 | else |
---|
512 | return (T1)b < a ? (T1)b : a; |
---|
513 | } |
---|
514 | |
---|
515 | //! \brief Tests whether a conversion from -> to is safe to perform |
---|
516 | //! \param from the first value |
---|
517 | //! \param to the second value |
---|
518 | //! \returns true if its safe to convert from into to, false otherwise. |
---|
519 | template <class T1, class T2> |
---|
520 | inline bool SafeConvert(T1 from, T2 &to) |
---|
521 | { |
---|
522 | to = (T2)from; |
---|
523 | if (from != to || (from > 0) != (to > 0)) |
---|
524 | return false; |
---|
525 | return true; |
---|
526 | } |
---|
527 | |
---|
528 | //! \brief Converts a value to a string |
---|
529 | //! \param value the value to convert |
---|
530 | //! \param base the base to use during the conversion |
---|
531 | //! \returns the string representation of value in base. |
---|
532 | template <class T> |
---|
533 | std::string IntToString(T value, unsigned int base = 10) |
---|
534 | { |
---|
535 | // Hack... set the high bit for uppercase. |
---|
536 | static const unsigned int HIGH_BIT = (1U << 31); |
---|
537 | const char CH = !!(base & HIGH_BIT) ? 'A' : 'a'; |
---|
538 | base &= ~HIGH_BIT; |
---|
539 | |
---|
540 | CRYPTOPP_ASSERT(base >= 2); |
---|
541 | if (value == 0) |
---|
542 | return "0"; |
---|
543 | |
---|
544 | bool negate = false; |
---|
545 | if (value < 0) |
---|
546 | { |
---|
547 | negate = true; |
---|
548 | value = 0-value; // VC .NET does not like -a |
---|
549 | } |
---|
550 | std::string result; |
---|
551 | while (value > 0) |
---|
552 | { |
---|
553 | T digit = value % base; |
---|
554 | result = char((digit < 10 ? '0' : (CH - 10)) + digit) + result; |
---|
555 | value /= base; |
---|
556 | } |
---|
557 | if (negate) |
---|
558 | result = "-" + result; |
---|
559 | return result; |
---|
560 | } |
---|
561 | |
---|
562 | //! \brief Converts an unsigned value to a string |
---|
563 | //! \param value the value to convert |
---|
564 | //! \param base the base to use during the conversion |
---|
565 | //! \returns the string representation of value in base. |
---|
566 | //! \details this template function specialization was added to suppress |
---|
567 | //! Coverity findings on IntToString() with unsigned types. |
---|
568 | template <> CRYPTOPP_DLL |
---|
569 | std::string IntToString<word64>(word64 value, unsigned int base); |
---|
570 | |
---|
571 | //! \brief Converts an Integer to a string |
---|
572 | //! \param value the Integer to convert |
---|
573 | //! \param base the base to use during the conversion |
---|
574 | //! \returns the string representation of value in base. |
---|
575 | //! \details This is a template specialization of IntToString(). Use it |
---|
576 | //! like IntToString(): |
---|
577 | //! <pre> |
---|
578 | //! // Print integer in base 10 |
---|
579 | //! Integer n... |
---|
580 | //! std::string s = IntToString(n, 10); |
---|
581 | //! </pre> |
---|
582 | //! \details The string is presented with lowercase letters by default. A |
---|
583 | //! hack is available to switch to uppercase letters without modifying |
---|
584 | //! the function signature. |
---|
585 | //! <pre> |
---|
586 | //! // Print integer in base 16, uppercase letters |
---|
587 | //! Integer n... |
---|
588 | //! const unsigned int UPPER = (1 << 31); |
---|
589 | //! std::string s = IntToString(n, (UPPER | 16));</pre> |
---|
590 | template <> CRYPTOPP_DLL |
---|
591 | std::string IntToString<Integer>(Integer value, unsigned int base); |
---|
592 | |
---|
593 | #if CRYPTOPP_MSC_VERSION |
---|
594 | # pragma warning(pop) |
---|
595 | #endif |
---|
596 | |
---|
597 | #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE |
---|
598 | # pragma GCC diagnostic pop |
---|
599 | #endif |
---|
600 | |
---|
601 | #define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue |
---|
602 | |
---|
603 | // this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack |
---|
604 | #define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y))) |
---|
605 | // these may be faster on other CPUs/compilers |
---|
606 | // #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255) |
---|
607 | // #define GETBYTE(x, y) (((byte *)&(x))[y]) |
---|
608 | |
---|
609 | #define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y))) |
---|
610 | |
---|
611 | //! \brief Returns the parity of a value |
---|
612 | //! \param value the value to provide the parity |
---|
613 | //! \returns 1 if the number 1-bits in the value is odd, 0 otherwise |
---|
614 | template <class T> |
---|
615 | unsigned int Parity(T value) |
---|
616 | { |
---|
617 | for (unsigned int i=8*sizeof(value)/2; i>0; i/=2) |
---|
618 | value ^= value >> i; |
---|
619 | return (unsigned int)value&1; |
---|
620 | } |
---|
621 | |
---|
622 | //! \brief Returns the number of 8-bit bytes or octets required for a value |
---|
623 | //! \param value the value to test |
---|
624 | //! \returns the minimum number of 8-bit bytes or octets required to represent a value |
---|
625 | template <class T> |
---|
626 | unsigned int BytePrecision(const T &value) |
---|
627 | { |
---|
628 | if (!value) |
---|
629 | return 0; |
---|
630 | |
---|
631 | unsigned int l=0, h=8*sizeof(value); |
---|
632 | while (h-l > 8) |
---|
633 | { |
---|
634 | unsigned int t = (l+h)/2; |
---|
635 | if (value >> t) |
---|
636 | l = t; |
---|
637 | else |
---|
638 | h = t; |
---|
639 | } |
---|
640 | |
---|
641 | return h/8; |
---|
642 | } |
---|
643 | |
---|
644 | //! \brief Returns the number of bits required for a value |
---|
645 | //! \param value the value to test |
---|
646 | //! \returns the maximum number of bits required to represent a value. |
---|
647 | template <class T> |
---|
648 | unsigned int BitPrecision(const T &value) |
---|
649 | { |
---|
650 | if (!value) |
---|
651 | return 0; |
---|
652 | |
---|
653 | unsigned int l=0, h=8*sizeof(value); |
---|
654 | |
---|
655 | while (h-l > 1) |
---|
656 | { |
---|
657 | unsigned int t = (l+h)/2; |
---|
658 | if (value >> t) |
---|
659 | l = t; |
---|
660 | else |
---|
661 | h = t; |
---|
662 | } |
---|
663 | |
---|
664 | return h; |
---|
665 | } |
---|
666 | |
---|
667 | //! Determines the number of trailing 0-bits in a value |
---|
668 | //! \param v the 32-bit value to test |
---|
669 | //! \returns the number of trailing 0-bits in v, starting at the least significant bit position |
---|
670 | //! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least |
---|
671 | //! significant bit position. The return value is undefined if there are no 1-bits set in the value v. |
---|
672 | //! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position. |
---|
673 | inline unsigned int TrailingZeros(word32 v) |
---|
674 | { |
---|
675 | // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors |
---|
676 | // We don't enable for Microsoft because it requires a runtime check. |
---|
677 | // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx |
---|
678 | CRYPTOPP_ASSERT(v != 0); |
---|
679 | #if defined(__GNUC__) && defined(__BMI__) |
---|
680 | return (unsigned int)_tzcnt_u32(v); |
---|
681 | #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400) |
---|
682 | return (unsigned int)__builtin_ctz(v); |
---|
683 | #elif defined(_MSC_VER) && (_MSC_VER >= 1400) |
---|
684 | unsigned long result; |
---|
685 | _BitScanForward(&result, v); |
---|
686 | return (unsigned int)result; |
---|
687 | #else |
---|
688 | // from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup |
---|
689 | static const int MultiplyDeBruijnBitPosition[32] = |
---|
690 | { |
---|
691 | 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, |
---|
692 | 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 |
---|
693 | }; |
---|
694 | return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27]; |
---|
695 | #endif |
---|
696 | } |
---|
697 | |
---|
698 | //! Determines the number of trailing 0-bits in a value |
---|
699 | //! \param v the 64-bit value to test |
---|
700 | //! \returns the number of trailing 0-bits in v, starting at the least significant bit position |
---|
701 | //! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least |
---|
702 | //! significant bit position. The return value is undefined if there are no 1-bits set in the value v. |
---|
703 | //! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position. |
---|
704 | inline unsigned int TrailingZeros(word64 v) |
---|
705 | { |
---|
706 | // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors |
---|
707 | // We don't enable for Microsoft because it requires a runtime check. |
---|
708 | // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx |
---|
709 | CRYPTOPP_ASSERT(v != 0); |
---|
710 | #if defined(__GNUC__) && defined(__BMI__) && defined(__x86_64__) |
---|
711 | return (unsigned int)_tzcnt_u64(v); |
---|
712 | #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400) |
---|
713 | return (unsigned int)__builtin_ctzll(v); |
---|
714 | #elif defined(_MSC_VER) && (_MSC_VER >= 1400) && (defined(_M_X64) || defined(_M_IA64)) |
---|
715 | unsigned long result; |
---|
716 | _BitScanForward64(&result, v); |
---|
717 | return (unsigned int)result; |
---|
718 | #else |
---|
719 | return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32)); |
---|
720 | #endif |
---|
721 | } |
---|
722 | |
---|
723 | //! \brief Truncates the value to the specified number of bits. |
---|
724 | //! \param value the value to truncate or mask |
---|
725 | //! \param bits the number of bits to truncate or mask |
---|
726 | //! \returns the value truncated to the specified number of bits, starting at the least |
---|
727 | //! significant bit position |
---|
728 | //! \details This function masks the low-order bits of value and returns the result. The |
---|
729 | //! mask is created with <tt>(1 << bits) - 1</tt>. |
---|
730 | template <class T> |
---|
731 | inline T Crop(T value, size_t bits) |
---|
732 | { |
---|
733 | if (bits < 8*sizeof(value)) |
---|
734 | return T(value & ((T(1) << bits) - 1)); |
---|
735 | else |
---|
736 | return value; |
---|
737 | } |
---|
738 | |
---|
739 | //! \brief Returns the number of 8-bit bytes or octets required for the specified number of bits |
---|
740 | //! \param bitCount the number of bits |
---|
741 | //! \returns the minimum number of 8-bit bytes or octets required by bitCount |
---|
742 | //! \details BitsToBytes is effectively a ceiling function based on 8-bit bytes. |
---|
743 | inline size_t BitsToBytes(size_t bitCount) |
---|
744 | { |
---|
745 | return ((bitCount+7)/(8)); |
---|
746 | } |
---|
747 | |
---|
748 | //! \brief Returns the number of words required for the specified number of bytes |
---|
749 | //! \param byteCount the number of bytes |
---|
750 | //! \returns the minimum number of words required by byteCount |
---|
751 | //! \details BytesToWords is effectively a ceiling function based on <tt>WORD_SIZE</tt>. |
---|
752 | //! <tt>WORD_SIZE</tt> is defined in config.h |
---|
753 | inline size_t BytesToWords(size_t byteCount) |
---|
754 | { |
---|
755 | return ((byteCount+WORD_SIZE-1)/WORD_SIZE); |
---|
756 | } |
---|
757 | |
---|
758 | //! \brief Returns the number of words required for the specified number of bits |
---|
759 | //! \param bitCount the number of bits |
---|
760 | //! \returns the minimum number of words required by bitCount |
---|
761 | //! \details BitsToWords is effectively a ceiling function based on <tt>WORD_BITS</tt>. |
---|
762 | //! <tt>WORD_BITS</tt> is defined in config.h |
---|
763 | inline size_t BitsToWords(size_t bitCount) |
---|
764 | { |
---|
765 | return ((bitCount+WORD_BITS-1)/(WORD_BITS)); |
---|
766 | } |
---|
767 | |
---|
768 | //! \brief Returns the number of double words required for the specified number of bits |
---|
769 | //! \param bitCount the number of bits |
---|
770 | //! \returns the minimum number of double words required by bitCount |
---|
771 | //! \details BitsToDwords is effectively a ceiling function based on <tt>2*WORD_BITS</tt>. |
---|
772 | //! <tt>WORD_BITS</tt> is defined in config.h |
---|
773 | inline size_t BitsToDwords(size_t bitCount) |
---|
774 | { |
---|
775 | return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS)); |
---|
776 | } |
---|
777 | |
---|
778 | //! Performs an XOR of a buffer with a mask |
---|
779 | //! \param buf the buffer to XOR with the mask |
---|
780 | //! \param mask the mask to XOR with the buffer |
---|
781 | //! \param count the size of the buffers, in bytes |
---|
782 | //! \details The function effectively visits each element in the buffers and performs |
---|
783 | //! <tt>buf[i] ^= mask[i]</tt>. buf and mask must be of equal size. |
---|
784 | CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count); |
---|
785 | |
---|
786 | //! Performs an XOR of an input buffer with a mask and stores the result in an output buffer |
---|
787 | //! \param output the destination buffer |
---|
788 | //! \param input the source buffer to XOR with the mask |
---|
789 | //! \param mask the mask buffer to XOR with the input buffer |
---|
790 | //! \param count the size of the buffers, in bytes |
---|
791 | //! \details The function effectively visits each element in the buffers and performs |
---|
792 | //! <tt>output[i] = input[i] ^ mask[i]</tt>. output, input and mask must be of equal size. |
---|
793 | CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count); |
---|
794 | |
---|
795 | //! \brief Performs a near constant-time comparison of two equally sized buffers |
---|
796 | //! \param buf1 the first buffer |
---|
797 | //! \param buf2 the second buffer |
---|
798 | //! \param count the size of the buffers, in bytes |
---|
799 | //! \details The function effectively performs an XOR of the elements in two equally sized buffers |
---|
800 | //! and retruns a result based on the XOR operation. The function is near constant-time because |
---|
801 | //! CPU micro-code timings could affect the "constant-ness". Calling code is responsible for |
---|
802 | //! mitigating timing attacks if the buffers are \a not equally sized. |
---|
803 | //! \sa ModPowerOf2 |
---|
804 | CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count); |
---|
805 | |
---|
806 | //! \brief Tests whether a value is a power of 2 |
---|
807 | //! \param value the value to test |
---|
808 | //! \returns true if value is a power of 2, false otherwise |
---|
809 | //! \details The function creates a mask of <tt>value - 1</tt> and returns the result of |
---|
810 | //! an AND operation compared to 0. If value is 0 or less than 0, then the function returns false. |
---|
811 | template <class T> |
---|
812 | inline bool IsPowerOf2(const T &value) |
---|
813 | { |
---|
814 | return value > 0 && (value & (value-1)) == 0; |
---|
815 | } |
---|
816 | |
---|
817 | #if defined(__GNUC__) && defined(__BMI__) |
---|
818 | template <> |
---|
819 | inline bool IsPowerOf2<word32>(const word32 &value) |
---|
820 | { |
---|
821 | return value > 0 && _blsr_u32(value) == 0; |
---|
822 | } |
---|
823 | |
---|
824 | # if defined(__x86_64__) |
---|
825 | template <> |
---|
826 | inline bool IsPowerOf2<word64>(const word64 &value) |
---|
827 | { |
---|
828 | return value > 0 && _blsr_u64(value) == 0; |
---|
829 | } |
---|
830 | # endif |
---|
831 | #endif |
---|
832 | |
---|
833 | //! \brief Performs a saturating subtract clamped at 0 |
---|
834 | //! \param a the minuend |
---|
835 | //! \param b the subtrahend |
---|
836 | //! \returns the difference produced by the saturating subtract |
---|
837 | //! \details Saturating arithmetic restricts results to a fixed range. Results that are less than 0 are clamped at 0. |
---|
838 | //! \details Use of saturating arithmetic in places can be advantageous because it can |
---|
839 | //! avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>). |
---|
840 | template <class T1, class T2> |
---|
841 | inline T1 SaturatingSubtract(const T1 &a, const T2 &b) |
---|
842 | { |
---|
843 | // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html |
---|
844 | return T1((a > b) ? (a - b) : 0); |
---|
845 | } |
---|
846 | |
---|
847 | //! \brief Performs a saturating subtract clamped at 1 |
---|
848 | //! \param a the minuend |
---|
849 | //! \param b the subtrahend |
---|
850 | //! \returns the difference produced by the saturating subtract |
---|
851 | //! \details Saturating arithmetic restricts results to a fixed range. Results that are less than |
---|
852 | //! 1 are clamped at 1. |
---|
853 | //! \details Use of saturating arithmetic in places can be advantageous because it can |
---|
854 | //! avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>). |
---|
855 | template <class T1, class T2> |
---|
856 | inline T1 SaturatingSubtract1(const T1 &a, const T2 &b) |
---|
857 | { |
---|
858 | // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html |
---|
859 | return T1((a > b) ? (a - b) : 1); |
---|
860 | } |
---|
861 | |
---|
862 | //! \brief Reduces a value to a power of 2 |
---|
863 | //! \param a the first value |
---|
864 | //! \param b the second value |
---|
865 | //! \returns ModPowerOf2() returns <tt>a & (b-1)</tt>. <tt>b</tt> must be a power of 2. |
---|
866 | //! Use IsPowerOf2() to determine if <tt>b</tt> is a suitable candidate. |
---|
867 | //! \sa IsPowerOf2 |
---|
868 | template <class T1, class T2> |
---|
869 | inline T2 ModPowerOf2(const T1 &a, const T2 &b) |
---|
870 | { |
---|
871 | CRYPTOPP_ASSERT(IsPowerOf2(b)); |
---|
872 | // Coverity finding CID 170383 Overflowed return value (INTEGER_OVERFLOW) |
---|
873 | return T2(a) & SaturatingSubtract(b,1U); |
---|
874 | } |
---|
875 | |
---|
876 | //! \brief Rounds a value down to a multiple of a second value |
---|
877 | //! \param n the value to reduce |
---|
878 | //! \param m the value to reduce \n to to a multiple |
---|
879 | //! \returns the possibly unmodified value \n |
---|
880 | //! \details RoundDownToMultipleOf is effectively a floor function based on m. The function returns |
---|
881 | //! the value <tt>n - n\%m</tt>. If n is a multiple of m, then the original value is returned. |
---|
882 | template <class T1, class T2> |
---|
883 | inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m) |
---|
884 | { |
---|
885 | if (IsPowerOf2(m)) |
---|
886 | return n - ModPowerOf2(n, m); |
---|
887 | else |
---|
888 | return n - n%m; |
---|
889 | } |
---|
890 | |
---|
891 | //! \brief Rounds a value up to a multiple of a second value |
---|
892 | //! \param n the value to reduce |
---|
893 | //! \param m the value to reduce \n to to a multiple |
---|
894 | //! \returns the possibly unmodified value \n |
---|
895 | //! \details RoundUpToMultipleOf is effectively a ceiling function based on m. The function |
---|
896 | //! returns the value <tt>n + n\%m</tt>. If n is a multiple of m, then the original value is |
---|
897 | //! returned. If the value n would overflow, then an InvalidArgument exception is thrown. |
---|
898 | template <class T1, class T2> |
---|
899 | inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m) |
---|
900 | { |
---|
901 | if (n > (SIZE_MAX/sizeof(T1))-m-1) |
---|
902 | throw InvalidArgument("RoundUpToMultipleOf: integer overflow"); |
---|
903 | return RoundDownToMultipleOf(T1(n+m-1), m); |
---|
904 | } |
---|
905 | |
---|
906 | //! \brief Returns the minimum alignment requirements of a type |
---|
907 | //! \param dummy an unused Visual C++ 6.0 workaround |
---|
908 | //! \returns the minimum alignment requirements of a type, in bytes |
---|
909 | //! \details Internally the function calls C++11's <tt>alignof</tt> if available. If not available, |
---|
910 | //! then the function uses compiler specific extensions such as <tt>__alignof</tt> and |
---|
911 | //! <tt>_alignof_</tt>. If an extension is not available, then the function uses |
---|
912 | //! <tt>__BIGGEST_ALIGNMENT__</tt> if <tt>__BIGGEST_ALIGNMENT__</tt> is smaller than <tt>sizeof(T)</tt>. |
---|
913 | //! <tt>sizeof(T)</tt> is used if all others are not available. |
---|
914 | //! In <em>all</em> cases, if <tt>CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS</tt> is defined, then the |
---|
915 | //! function returns 1. |
---|
916 | template <class T> |
---|
917 | inline unsigned int GetAlignmentOf(T *dummy=NULL) // VC60 workaround |
---|
918 | { |
---|
919 | // GCC 4.6 (circa 2008) and above aggressively uses vectorization. |
---|
920 | #if defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS) |
---|
921 | if (sizeof(T) < 16) |
---|
922 | return 1; |
---|
923 | #endif |
---|
924 | CRYPTOPP_UNUSED(dummy); |
---|
925 | #if defined(CRYPTOPP_CXX11_ALIGNOF) |
---|
926 | return alignof(T); |
---|
927 | #elif (_MSC_VER >= 1300) |
---|
928 | return __alignof(T); |
---|
929 | #elif defined(__GNUC__) |
---|
930 | return __alignof__(T); |
---|
931 | #elif CRYPTOPP_BOOL_SLOW_WORD64 |
---|
932 | return UnsignedMin(4U, sizeof(T)); |
---|
933 | #else |
---|
934 | # if __BIGGEST_ALIGNMENT__ |
---|
935 | if (__BIGGEST_ALIGNMENT__ < sizeof(T)) |
---|
936 | return __BIGGEST_ALIGNMENT__; |
---|
937 | else |
---|
938 | # endif |
---|
939 | return sizeof(T); |
---|
940 | #endif |
---|
941 | } |
---|
942 | |
---|
943 | //! \brief Determines whether ptr is aligned to a minimum value |
---|
944 | //! \param ptr the pointer being checked for alignment |
---|
945 | //! \param alignment the alignment value to test the pointer against |
---|
946 | //! \returns true if ptr is aligned on at least align boundary |
---|
947 | //! \details Internally the function tests whether alignment is 1. If so, the function returns true. |
---|
948 | //! If not, then the function effectively performs a modular reduction and returns true if the residue is 0 |
---|
949 | inline bool IsAlignedOn(const void *ptr, unsigned int alignment) |
---|
950 | { |
---|
951 | return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)ptr, alignment) == 0 : (size_t)ptr % alignment == 0); |
---|
952 | } |
---|
953 | |
---|
954 | //! \brief Determines whether ptr is minimally aligned |
---|
955 | //! \param ptr the pointer to check for alignment |
---|
956 | //! \param dummy an unused Visual C++ 6.0 workaround |
---|
957 | //! \returns true if ptr follows native byte ordering, false otherwise |
---|
958 | //! \details Internally the function calls IsAlignedOn with a second parameter of GetAlignmentOf<T> |
---|
959 | template <class T> |
---|
960 | inline bool IsAligned(const void *ptr, T *dummy=NULL) // VC60 workaround |
---|
961 | { |
---|
962 | CRYPTOPP_UNUSED(dummy); |
---|
963 | return IsAlignedOn(ptr, GetAlignmentOf<T>()); |
---|
964 | } |
---|
965 | |
---|
966 | #if defined(IS_LITTLE_ENDIAN) |
---|
967 | typedef LittleEndian NativeByteOrder; |
---|
968 | #elif defined(IS_BIG_ENDIAN) |
---|
969 | typedef BigEndian NativeByteOrder; |
---|
970 | #else |
---|
971 | # error "Unable to determine endian-ness" |
---|
972 | #endif |
---|
973 | |
---|
974 | //! \brief Returns NativeByteOrder as an enumerated ByteOrder value |
---|
975 | //! \returns LittleEndian if the native byte order is little-endian, and BigEndian if the |
---|
976 | //! native byte order is big-endian |
---|
977 | //! \details NativeByteOrder is a typedef depending on the platform. If IS_LITTLE_ENDIAN is |
---|
978 | //! set in config.h, then GetNativeByteOrder returns LittleEndian. If |
---|
979 | //! IS_BIG_ENDIAN is set, then GetNativeByteOrder returns BigEndian. |
---|
980 | //! \note There are other byte orders besides little- and big-endian, and they include bi-endian |
---|
981 | //! and PDP-endian. If a system is neither little-endian nor big-endian, then a compile time error occurs. |
---|
982 | inline ByteOrder GetNativeByteOrder() |
---|
983 | { |
---|
984 | return NativeByteOrder::ToEnum(); |
---|
985 | } |
---|
986 | |
---|
987 | //! \brief Determines whether order follows native byte ordering |
---|
988 | //! \param order the ordering being tested against native byte ordering |
---|
989 | //! \returns true if order follows native byte ordering, false otherwise |
---|
990 | inline bool NativeByteOrderIs(ByteOrder order) |
---|
991 | { |
---|
992 | return order == GetNativeByteOrder(); |
---|
993 | } |
---|
994 | |
---|
995 | //! \brief Returns the direction the cipher is being operated |
---|
996 | //! \param obj the cipher object being queried |
---|
997 | //! \returns \p ENCRYPTION if the cipher obj is being operated in its forward direction, |
---|
998 | //! \p DECRYPTION otherwise |
---|
999 | //! \details A cipher can be operated in a "forward" direction (encryption) or a "reverse" |
---|
1000 | //! direction (decryption). The operations do not have to be symmetric, meaning a second |
---|
1001 | //! application of the transformation does not necessariy return the original message. |
---|
1002 | //! That is, <tt>E(D(m))</tt> may not equal <tt>E(E(m))</tt>; and <tt>D(E(m))</tt> may not |
---|
1003 | //! equal <tt>D(D(m))</tt>. |
---|
1004 | template <class T> |
---|
1005 | inline CipherDir GetCipherDir(const T &obj) |
---|
1006 | { |
---|
1007 | return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION; |
---|
1008 | } |
---|
1009 | |
---|
1010 | //! \brief Attempts to reclaim unused memory |
---|
1011 | //! \throws bad_alloc |
---|
1012 | //! \details In the normal course of running a program, a request for memory normally succeeds. If a |
---|
1013 | //! call to AlignedAllocate or UnalignedAllocate fails, then CallNewHandler is called in |
---|
1014 | //! an effort to recover. Internally, CallNewHandler calls set_new_handler(NULL) in an effort |
---|
1015 | //! to free memory. There is no guarantee CallNewHandler will be able to procure more memory so |
---|
1016 | //! an allocation succeeds. If the call to set_new_handler fails, then CallNewHandler throws |
---|
1017 | //! a bad_alloc exception. |
---|
1018 | CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler(); |
---|
1019 | |
---|
1020 | //! \brief Performs an addition with carry on a block of bytes |
---|
1021 | //! \param inout the byte block |
---|
1022 | //! \param size the size of the block, in bytes |
---|
1023 | //! \details Performs an addition with carry by adding 1 on a block of bytes starting at the least |
---|
1024 | //! significant byte. Once carry is 0, the function terminates and returns to the caller. |
---|
1025 | //! \note The function is not constant time because it stops processing when the carry is 0. |
---|
1026 | inline void IncrementCounterByOne(byte *inout, unsigned int size) |
---|
1027 | { |
---|
1028 | CRYPTOPP_ASSERT(inout != NULL); CRYPTOPP_ASSERT(size < INT_MAX); |
---|
1029 | for (int i=int(size-1), carry=1; i>=0 && carry; i--) |
---|
1030 | carry = !++inout[i]; |
---|
1031 | } |
---|
1032 | |
---|
1033 | //! \brief Performs an addition with carry on a block of bytes |
---|
1034 | //! \param output the destination block of bytes |
---|
1035 | //! \param input the source block of bytes |
---|
1036 | //! \param size the size of the block |
---|
1037 | //! \details Performs an addition with carry on a block of bytes starting at the least significant |
---|
1038 | //! byte. Once carry is 0, the remaining bytes from input are copied to output using memcpy. |
---|
1039 | //! \details The function is \a close to near-constant time because it operates on all the bytes in the blocks. |
---|
1040 | inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int size) |
---|
1041 | { |
---|
1042 | CRYPTOPP_ASSERT(output != NULL); CRYPTOPP_ASSERT(input != NULL); CRYPTOPP_ASSERT(size < INT_MAX); |
---|
1043 | |
---|
1044 | int i, carry; |
---|
1045 | for (i=int(size-1), carry=1; i>=0 && carry; i--) |
---|
1046 | carry = ((output[i] = input[i]+1) == 0); |
---|
1047 | memcpy_s(output, size, input, size_t(i)+1); |
---|
1048 | } |
---|
1049 | |
---|
1050 | //! \brief Performs a branchless swap of values a and b if condition c is true |
---|
1051 | //! \param c the condition to perform the swap |
---|
1052 | //! \param a the first value |
---|
1053 | //! \param b the second value |
---|
1054 | template <class T> |
---|
1055 | inline void ConditionalSwap(bool c, T &a, T &b) |
---|
1056 | { |
---|
1057 | T t = c * (a ^ b); |
---|
1058 | a ^= t; |
---|
1059 | b ^= t; |
---|
1060 | } |
---|
1061 | |
---|
1062 | //! \brief Performs a branchless swap of pointers a and b if condition c is true |
---|
1063 | //! \param c the condition to perform the swap |
---|
1064 | //! \param a the first pointer |
---|
1065 | //! \param b the second pointer |
---|
1066 | template <class T> |
---|
1067 | inline void ConditionalSwapPointers(bool c, T &a, T &b) |
---|
1068 | { |
---|
1069 | ptrdiff_t t = size_t(c) * (a - b); |
---|
1070 | a -= t; |
---|
1071 | b += t; |
---|
1072 | } |
---|
1073 | |
---|
1074 | // see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html |
---|
1075 | // and https://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data |
---|
1076 | |
---|
1077 | //! \brief Sets each element of an array to 0 |
---|
1078 | //! \param buf an array of elements |
---|
1079 | //! \param n the number of elements in the array |
---|
1080 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal |
---|
1081 | template <class T> |
---|
1082 | void SecureWipeBuffer(T *buf, size_t n) |
---|
1083 | { |
---|
1084 | // GCC 4.3.2 on Cygwin optimizes away the first store if this loop is done in the forward direction |
---|
1085 | volatile T *p = buf+n; |
---|
1086 | while (n--) |
---|
1087 | *((volatile T*)(--p)) = 0; |
---|
1088 | } |
---|
1089 | |
---|
1090 | #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) |
---|
1091 | |
---|
1092 | //! \brief Sets each byte of an array to 0 |
---|
1093 | //! \param buf an array of bytes |
---|
1094 | //! \param n the number of elements in the array |
---|
1095 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
---|
1096 | template<> inline void SecureWipeBuffer(byte *buf, size_t n) |
---|
1097 | { |
---|
1098 | volatile byte *p = buf; |
---|
1099 | #ifdef __GNUC__ |
---|
1100 | asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
---|
1101 | #else |
---|
1102 | __stosb((byte *)(size_t)p, 0, n); |
---|
1103 | #endif |
---|
1104 | } |
---|
1105 | |
---|
1106 | //! \brief Sets each 16-bit element of an array to 0 |
---|
1107 | //! \param buf an array of 16-bit words |
---|
1108 | //! \param n the number of elements in the array |
---|
1109 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
---|
1110 | template<> inline void SecureWipeBuffer(word16 *buf, size_t n) |
---|
1111 | { |
---|
1112 | volatile word16 *p = buf; |
---|
1113 | #ifdef __GNUC__ |
---|
1114 | asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
---|
1115 | #else |
---|
1116 | __stosw((word16 *)(size_t)p, 0, n); |
---|
1117 | #endif |
---|
1118 | } |
---|
1119 | |
---|
1120 | //! \brief Sets each 32-bit element of an array to 0 |
---|
1121 | //! \param buf an array of 32-bit words |
---|
1122 | //! \param n the number of elements in the array |
---|
1123 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
---|
1124 | template<> inline void SecureWipeBuffer(word32 *buf, size_t n) |
---|
1125 | { |
---|
1126 | volatile word32 *p = buf; |
---|
1127 | #ifdef __GNUC__ |
---|
1128 | asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
---|
1129 | #else |
---|
1130 | __stosd((unsigned long *)(size_t)p, 0, n); |
---|
1131 | #endif |
---|
1132 | } |
---|
1133 | |
---|
1134 | //! \brief Sets each 64-bit element of an array to 0 |
---|
1135 | //! \param buf an array of 64-bit words |
---|
1136 | //! \param n the number of elements in the array |
---|
1137 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
---|
1138 | template<> inline void SecureWipeBuffer(word64 *buf, size_t n) |
---|
1139 | { |
---|
1140 | #if CRYPTOPP_BOOL_X64 |
---|
1141 | volatile word64 *p = buf; |
---|
1142 | #ifdef __GNUC__ |
---|
1143 | asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory"); |
---|
1144 | #else |
---|
1145 | __stosq((word64 *)(size_t)p, 0, n); |
---|
1146 | #endif |
---|
1147 | #else |
---|
1148 | SecureWipeBuffer((word32 *)buf, 2*n); |
---|
1149 | #endif |
---|
1150 | } |
---|
1151 | |
---|
1152 | #endif // #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86) |
---|
1153 | |
---|
1154 | #if (_MSC_VER >= 1700) && defined(_M_ARM) |
---|
1155 | template<> inline void SecureWipeBuffer(byte *buf, size_t n) |
---|
1156 | { |
---|
1157 | char *p = reinterpret_cast<char*>(buf+n); |
---|
1158 | while (n--) |
---|
1159 | __iso_volatile_store8(--p, 0); |
---|
1160 | } |
---|
1161 | |
---|
1162 | template<> inline void SecureWipeBuffer(word16 *buf, size_t n) |
---|
1163 | { |
---|
1164 | short *p = reinterpret_cast<short*>(buf+n); |
---|
1165 | while (n--) |
---|
1166 | __iso_volatile_store16(--p, 0); |
---|
1167 | } |
---|
1168 | |
---|
1169 | template<> inline void SecureWipeBuffer(word32 *buf, size_t n) |
---|
1170 | { |
---|
1171 | int *p = reinterpret_cast<int*>(buf+n); |
---|
1172 | while (n--) |
---|
1173 | __iso_volatile_store32(--p, 0); |
---|
1174 | } |
---|
1175 | |
---|
1176 | template<> inline void SecureWipeBuffer(word64 *buf, size_t n) |
---|
1177 | { |
---|
1178 | __int64 *p = reinterpret_cast<__int64*>(buf+n); |
---|
1179 | while (n--) |
---|
1180 | __iso_volatile_store64(--p, 0); |
---|
1181 | } |
---|
1182 | #endif |
---|
1183 | |
---|
1184 | //! \brief Sets each element of an array to 0 |
---|
1185 | //! \param buf an array of elements |
---|
1186 | //! \param n the number of elements in the array |
---|
1187 | //! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal. |
---|
1188 | template <class T> |
---|
1189 | inline void SecureWipeArray(T *buf, size_t n) |
---|
1190 | { |
---|
1191 | if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0) |
---|
1192 | SecureWipeBuffer((word64 *)(void *)buf, n * (sizeof(T)/8)); |
---|
1193 | else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0) |
---|
1194 | SecureWipeBuffer((word32 *)(void *)buf, n * (sizeof(T)/4)); |
---|
1195 | else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0) |
---|
1196 | SecureWipeBuffer((word16 *)(void *)buf, n * (sizeof(T)/2)); |
---|
1197 | else |
---|
1198 | SecureWipeBuffer((byte *)(void *)buf, n * sizeof(T)); |
---|
1199 | } |
---|
1200 | |
---|
1201 | //! \brief Converts a wide character C-string to a multibyte string |
---|
1202 | //! \param str C-string consisting of wide characters |
---|
1203 | //! \param throwOnError flag indication the function should throw on error |
---|
1204 | //! \returns str converted to a multibyte string or an empty string. |
---|
1205 | //! \details StringNarrow converts a wide string to a narrow string using C++ std::wcstombs() under |
---|
1206 | //! the executing thread's locale. A locale must be set before using this function, and it can be |
---|
1207 | //! set with std::setlocale() if needed. Upon success, the converted string is returned. |
---|
1208 | //! \details Upon failure with throwOnError as false, the function returns an empty string. If |
---|
1209 | //! throwOnError as true, the function throws an InvalidArgument() exception. |
---|
1210 | //! \note If you try to convert, say, the Chinese character for "bone" from UTF-16 (0x9AA8) to UTF-8 |
---|
1211 | //! (0xE9 0xAA 0xA8), then you must ensure the locale is available. If the locale is not available, |
---|
1212 | //! then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception. |
---|
1213 | #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 |
---|
1214 | std::string StringNarrow(const wchar_t *str, bool throwOnError = true); |
---|
1215 | #else |
---|
1216 | static std::string StringNarrow(const wchar_t *str, bool throwOnError = true) |
---|
1217 | { |
---|
1218 | CRYPTOPP_ASSERT(str); |
---|
1219 | std::string result; |
---|
1220 | |
---|
1221 | // Safer functions on Windows for C&A, https://github.com/weidai11/cryptopp/issues/55 |
---|
1222 | #if (CRYPTOPP_MSC_VERSION >= 1400) |
---|
1223 | size_t len=0, size=0; |
---|
1224 | errno_t err = 0; |
---|
1225 | |
---|
1226 | //const wchar_t* ptr = str; |
---|
1227 | //while (*ptr++) len++; |
---|
1228 | len = wcslen(str)+1; |
---|
1229 | |
---|
1230 | err = wcstombs_s(&size, NULL, 0, str, len*sizeof(wchar_t)); |
---|
1231 | CRYPTOPP_ASSERT(err == 0); |
---|
1232 | if (err != 0) {goto CONVERSION_ERROR;} |
---|
1233 | |
---|
1234 | result.resize(size); |
---|
1235 | err = wcstombs_s(&size, &result[0], size, str, len*sizeof(wchar_t)); |
---|
1236 | CRYPTOPP_ASSERT(err == 0); |
---|
1237 | |
---|
1238 | if (err != 0) |
---|
1239 | { |
---|
1240 | CONVERSION_ERROR: |
---|
1241 | if (throwOnError) |
---|
1242 | throw InvalidArgument("StringNarrow: wcstombs_s() call failed with error " + IntToString(err)); |
---|
1243 | else |
---|
1244 | return std::string(); |
---|
1245 | } |
---|
1246 | |
---|
1247 | // The safe routine's size includes the NULL. |
---|
1248 | if (!result.empty() && result[size - 1] == '\0') |
---|
1249 | result.erase(size - 1); |
---|
1250 | #else |
---|
1251 | size_t size = wcstombs(NULL, str, 0); |
---|
1252 | CRYPTOPP_ASSERT(size != (size_t)-1); |
---|
1253 | if (size == (size_t)-1) {goto CONVERSION_ERROR;} |
---|
1254 | |
---|
1255 | result.resize(size); |
---|
1256 | size = wcstombs(&result[0], str, size); |
---|
1257 | CRYPTOPP_ASSERT(size != (size_t)-1); |
---|
1258 | |
---|
1259 | if (size == (size_t)-1) |
---|
1260 | { |
---|
1261 | CONVERSION_ERROR: |
---|
1262 | if (throwOnError) |
---|
1263 | throw InvalidArgument("StringNarrow: wcstombs() call failed"); |
---|
1264 | else |
---|
1265 | return std::string(); |
---|
1266 | } |
---|
1267 | #endif |
---|
1268 | |
---|
1269 | return result; |
---|
1270 | } |
---|
1271 | #endif // StringNarrow and CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 |
---|
1272 | |
---|
1273 | #ifdef CRYPTOPP_DOXYGEN_PROCESSING |
---|
1274 | |
---|
1275 | //! \brief Allocates a buffer on 16-byte boundary |
---|
1276 | //! \param size the size of the buffer |
---|
1277 | //! \details AlignedAllocate is primarily used when the data will be proccessed by MMX, SSE2 and NEON |
---|
1278 | //! instructions. The assembly language routines rely on the alignment. If the alignment is not |
---|
1279 | //! respected, then a SIGBUS could be generated on Unix and Linux, and an |
---|
1280 | //! EXCEPTION_DATATYPE_MISALIGNMENT could be generated on Windows. |
---|
1281 | //! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is |
---|
1282 | //! defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h |
---|
1283 | CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size); |
---|
1284 | |
---|
1285 | //! \brief Frees a buffer allocated with AlignedAllocate |
---|
1286 | //! \param ptr the buffer to free |
---|
1287 | //! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is |
---|
1288 | //! defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h |
---|
1289 | CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr); |
---|
1290 | |
---|
1291 | #endif // CRYPTOPP_DOXYGEN_PROCESSING |
---|
1292 | |
---|
1293 | #if CRYPTOPP_BOOL_ALIGN16 |
---|
1294 | CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size); |
---|
1295 | CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr); |
---|
1296 | #endif // CRYPTOPP_BOOL_ALIGN16 |
---|
1297 | |
---|
1298 | //! \brief Allocates a buffer |
---|
1299 | //! \param size the size of the buffer |
---|
1300 | CRYPTOPP_DLL void * CRYPTOPP_API UnalignedAllocate(size_t size); |
---|
1301 | |
---|
1302 | //! \brief Frees a buffer allocated with UnalignedAllocate |
---|
1303 | //! \param ptr the buffer to free |
---|
1304 | CRYPTOPP_DLL void CRYPTOPP_API UnalignedDeallocate(void *ptr); |
---|
1305 | |
---|
1306 | // ************** rotate functions *************** |
---|
1307 | |
---|
1308 | //! \brief Performs a left rotate |
---|
1309 | //! \tparam T the word type |
---|
1310 | //! \param x the value to rotate |
---|
1311 | //! \param y the number of bit positions to rotate the value |
---|
1312 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
---|
1313 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1314 | //! Use rotlMod if the rotate amount y is outside the range. |
---|
1315 | //! \note rotlFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
---|
1316 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
---|
1317 | //! counterparts. |
---|
1318 | template <class T> inline T rotlFixed(T x, unsigned int y) |
---|
1319 | { |
---|
1320 | // Portable rotate that reduces to single instruction... |
---|
1321 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157, |
---|
1322 | // https://software.intel.com/en-us/forums/topic/580884 |
---|
1323 | // and https://llvm.org/bugs/show_bug.cgi?id=24226 |
---|
1324 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
---|
1325 | static const unsigned int MASK = THIS_SIZE-1; |
---|
1326 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
---|
1327 | return T((x<<y)|(x>>(-y&MASK))); |
---|
1328 | } |
---|
1329 | |
---|
1330 | //! \brief Performs a right rotate |
---|
1331 | //! \tparam T the word type |
---|
1332 | //! \param x the value to rotate |
---|
1333 | //! \param y the number of bit positions to rotate the value |
---|
1334 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
---|
1335 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1336 | //! Use rotrMod if the rotate amount y is outside the range. |
---|
1337 | //! \note rotrFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
---|
1338 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
---|
1339 | //! counterparts. |
---|
1340 | template <class T> inline T rotrFixed(T x, unsigned int y) |
---|
1341 | { |
---|
1342 | // Portable rotate that reduces to single instruction... |
---|
1343 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157, |
---|
1344 | // https://software.intel.com/en-us/forums/topic/580884 |
---|
1345 | // and https://llvm.org/bugs/show_bug.cgi?id=24226 |
---|
1346 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
---|
1347 | static const unsigned int MASK = THIS_SIZE-1; |
---|
1348 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
---|
1349 | return T((x >> y)|(x<<(-y&MASK))); |
---|
1350 | } |
---|
1351 | |
---|
1352 | //! \brief Performs a left rotate |
---|
1353 | //! \tparam T the word type |
---|
1354 | //! \param x the value to rotate |
---|
1355 | //! \param y the number of bit positions to rotate the value |
---|
1356 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
---|
1357 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1358 | //! Use rotlMod if the rotate amount y is outside the range. |
---|
1359 | //! \note rotlVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
---|
1360 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
---|
1361 | //! counterparts. |
---|
1362 | template <class T> inline T rotlVariable(T x, unsigned int y) |
---|
1363 | { |
---|
1364 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
---|
1365 | static const unsigned int MASK = THIS_SIZE-1; |
---|
1366 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
---|
1367 | return T((x<<y)|(x>>(-y&MASK))); |
---|
1368 | } |
---|
1369 | |
---|
1370 | //! \brief Performs a right rotate |
---|
1371 | //! \tparam T the word type |
---|
1372 | //! \param x the value to rotate |
---|
1373 | //! \param y the number of bit positions to rotate the value |
---|
1374 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
---|
1375 | //! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1376 | //! Use rotrMod if the rotate amount y is outside the range. |
---|
1377 | //! \note rotrVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster |
---|
1378 | //! than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register |
---|
1379 | //! counterparts. |
---|
1380 | template <class T> inline T rotrVariable(T x, unsigned int y) |
---|
1381 | { |
---|
1382 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
---|
1383 | static const unsigned int MASK = THIS_SIZE-1; |
---|
1384 | CRYPTOPP_ASSERT(y < THIS_SIZE); |
---|
1385 | return T((x>>y)|(x<<(-y&MASK))); |
---|
1386 | } |
---|
1387 | |
---|
1388 | //! \brief Performs a left rotate |
---|
1389 | //! \tparam T the word type |
---|
1390 | //! \param x the value to rotate |
---|
1391 | //! \param y the number of bit positions to rotate the value |
---|
1392 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
---|
1393 | //! \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1394 | //! \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>. |
---|
1395 | template <class T> inline T rotlMod(T x, unsigned int y) |
---|
1396 | { |
---|
1397 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
---|
1398 | static const unsigned int MASK = THIS_SIZE-1; |
---|
1399 | return T((x<<(y&MASK))|(x>>(-y&MASK))); |
---|
1400 | } |
---|
1401 | |
---|
1402 | //! \brief Performs a right rotate |
---|
1403 | //! \tparam T the word type |
---|
1404 | //! \param x the value to rotate |
---|
1405 | //! \param y the number of bit positions to rotate the value |
---|
1406 | //! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide. |
---|
1407 | //! \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1408 | //! \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>. |
---|
1409 | template <class T> inline T rotrMod(T x, unsigned int y) |
---|
1410 | { |
---|
1411 | static const unsigned int THIS_SIZE = sizeof(T)*8; |
---|
1412 | static const unsigned int MASK = THIS_SIZE-1; |
---|
1413 | return T((x>>(y&MASK))|(x<<(-y&MASK))); |
---|
1414 | } |
---|
1415 | |
---|
1416 | #ifdef _MSC_VER |
---|
1417 | |
---|
1418 | //! \brief Performs a left rotate |
---|
1419 | //! \tparam T the word type |
---|
1420 | //! \param x the 32-bit value to rotate |
---|
1421 | //! \param y the number of bit positions to rotate the value |
---|
1422 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
---|
1423 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
---|
1424 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1425 | //! \note rotlFixed will assert in Debug builds if is outside the allowed range. |
---|
1426 | template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) |
---|
1427 | { |
---|
1428 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
---|
1429 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1430 | return y ? _lrotl(x, static_cast<byte>(y)) : x; |
---|
1431 | } |
---|
1432 | |
---|
1433 | //! \brief Performs a right rotate |
---|
1434 | //! \tparam T the word type |
---|
1435 | //! \param x the 32-bit value to rotate |
---|
1436 | //! \param y the number of bit positions to rotate the value |
---|
1437 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
---|
1438 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
---|
1439 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1440 | //! \note rotrFixed will assert in Debug builds if is outside the allowed range. |
---|
1441 | template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) |
---|
1442 | { |
---|
1443 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
---|
1444 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1445 | return y ? _lrotr(x, static_cast<byte>(y)) : x; |
---|
1446 | } |
---|
1447 | |
---|
1448 | //! \brief Performs a left rotate |
---|
1449 | //! \tparam T the word type |
---|
1450 | //! \param x the 32-bit value to rotate |
---|
1451 | //! \param y the number of bit positions to rotate the value |
---|
1452 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
---|
1453 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
---|
1454 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1455 | //! \note rotlVariable will assert in Debug builds if is outside the allowed range. |
---|
1456 | template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) |
---|
1457 | { |
---|
1458 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1459 | return _lrotl(x, static_cast<byte>(y)); |
---|
1460 | } |
---|
1461 | |
---|
1462 | //! \brief Performs a right rotate |
---|
1463 | //! \tparam T the word type |
---|
1464 | //! \param x the 32-bit value to rotate |
---|
1465 | //! \param y the number of bit positions to rotate the value |
---|
1466 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
---|
1467 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
---|
1468 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1469 | //! \note rotrVariable will assert in Debug builds if is outside the allowed range. |
---|
1470 | template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) |
---|
1471 | { |
---|
1472 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1473 | return _lrotr(x, static_cast<byte>(y)); |
---|
1474 | } |
---|
1475 | |
---|
1476 | //! \brief Performs a left rotate |
---|
1477 | //! \tparam T the word type |
---|
1478 | //! \param x the 32-bit value to rotate |
---|
1479 | //! \param y the number of bit positions to rotate the value |
---|
1480 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
---|
1481 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
---|
1482 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1483 | template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) |
---|
1484 | { |
---|
1485 | y %= 8*sizeof(x); |
---|
1486 | return _lrotl(x, static_cast<byte>(y)); |
---|
1487 | } |
---|
1488 | |
---|
1489 | //! \brief Performs a right rotate |
---|
1490 | //! \tparam T the word type |
---|
1491 | //! \param x the 32-bit value to rotate |
---|
1492 | //! \param y the number of bit positions to rotate the value |
---|
1493 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
---|
1494 | //! <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range |
---|
1495 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1496 | template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) |
---|
1497 | { |
---|
1498 | y %= 8*sizeof(x); |
---|
1499 | return _lrotr(x, static_cast<byte>(y)); |
---|
1500 | } |
---|
1501 | |
---|
1502 | #endif // #ifdef _MSC_VER |
---|
1503 | |
---|
1504 | #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) |
---|
1505 | // Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions |
---|
1506 | |
---|
1507 | //! \brief Performs a left rotate |
---|
1508 | //! \tparam T the word type |
---|
1509 | //! \param x the 64-bit value to rotate |
---|
1510 | //! \param y the number of bit positions to rotate the value |
---|
1511 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
---|
1512 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
---|
1513 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1514 | //! \note rotrFixed will assert in Debug builds if is outside the allowed range. |
---|
1515 | template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y) |
---|
1516 | { |
---|
1517 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
---|
1518 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1519 | return y ? _rotl64(x, static_cast<byte>(y)) : x; |
---|
1520 | } |
---|
1521 | |
---|
1522 | //! \brief Performs a right rotate |
---|
1523 | //! \tparam T the word type |
---|
1524 | //! \param x the 64-bit value to rotate |
---|
1525 | //! \param y the number of bit positions to rotate the value |
---|
1526 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
---|
1527 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
---|
1528 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1529 | //! \note rotrFixed will assert in Debug builds if is outside the allowed range. |
---|
1530 | template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y) |
---|
1531 | { |
---|
1532 | // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules. |
---|
1533 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1534 | return y ? _rotr64(x, static_cast<byte>(y)) : x; |
---|
1535 | } |
---|
1536 | |
---|
1537 | //! \brief Performs a left rotate |
---|
1538 | //! \tparam T the word type |
---|
1539 | //! \param x the 64-bit value to rotate |
---|
1540 | //! \param y the number of bit positions to rotate the value |
---|
1541 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
---|
1542 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
---|
1543 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1544 | //! \note rotlVariable will assert in Debug builds if is outside the allowed range. |
---|
1545 | template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y) |
---|
1546 | { |
---|
1547 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1548 | return _rotl64(x, static_cast<byte>(y)); |
---|
1549 | } |
---|
1550 | |
---|
1551 | //! \brief Performs a right rotate |
---|
1552 | //! \tparam T the word type |
---|
1553 | //! \param x the 64-bit value to rotate |
---|
1554 | //! \param y the number of bit positions to rotate the value |
---|
1555 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
---|
1556 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
---|
1557 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1558 | //! \note rotrVariable will assert in Debug builds if is outside the allowed range. |
---|
1559 | template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y) |
---|
1560 | { |
---|
1561 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1562 | return y ? _rotr64(x, static_cast<byte>(y)) : x; |
---|
1563 | } |
---|
1564 | |
---|
1565 | //! \brief Performs a left rotate |
---|
1566 | //! \tparam T the word type |
---|
1567 | //! \param x the 64-bit value to rotate |
---|
1568 | //! \param y the number of bit positions to rotate the value |
---|
1569 | //! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by |
---|
1570 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
---|
1571 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1572 | template<> inline word64 rotlMod<word64>(word64 x, unsigned int y) |
---|
1573 | { |
---|
1574 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1575 | return y ? _rotl64(x, static_cast<byte>(y)) : x; |
---|
1576 | } |
---|
1577 | |
---|
1578 | //! \brief Performs a right rotate |
---|
1579 | //! \tparam T the word type |
---|
1580 | //! \param x the 64-bit value to rotate |
---|
1581 | //! \param y the number of bit positions to rotate the value |
---|
1582 | //! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by |
---|
1583 | //! <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range |
---|
1584 | //! <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior. |
---|
1585 | template<> inline word64 rotrMod<word64>(word64 x, unsigned int y) |
---|
1586 | { |
---|
1587 | CRYPTOPP_ASSERT(y < 8*sizeof(x)); |
---|
1588 | return y ? _rotr64(x, static_cast<byte>(y)) : x; |
---|
1589 | } |
---|
1590 | |
---|
1591 | #endif // #if _MSC_VER >= 1310 |
---|
1592 | |
---|
1593 | #if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER) |
---|
1594 | // Intel C++ Compiler 10.0 gives undefined externals with these |
---|
1595 | |
---|
1596 | template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y) |
---|
1597 | { |
---|
1598 | // Intrinsic, not bound to C/C++ language rules. |
---|
1599 | return _rotl16(x, static_cast<byte>(y)); |
---|
1600 | } |
---|
1601 | |
---|
1602 | template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y) |
---|
1603 | { |
---|
1604 | // Intrinsic, not bound to C/C++ language rules. |
---|
1605 | return _rotr16(x, static_cast<byte>(y)); |
---|
1606 | } |
---|
1607 | |
---|
1608 | template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y) |
---|
1609 | { |
---|
1610 | return _rotl16(x, static_cast<byte>(y)); |
---|
1611 | } |
---|
1612 | |
---|
1613 | template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y) |
---|
1614 | { |
---|
1615 | return _rotr16(x, static_cast<byte>(y)); |
---|
1616 | } |
---|
1617 | |
---|
1618 | template<> inline word16 rotlMod<word16>(word16 x, unsigned int y) |
---|
1619 | { |
---|
1620 | return _rotl16(x, static_cast<byte>(y)); |
---|
1621 | } |
---|
1622 | |
---|
1623 | template<> inline word16 rotrMod<word16>(word16 x, unsigned int y) |
---|
1624 | { |
---|
1625 | return _rotr16(x, static_cast<byte>(y)); |
---|
1626 | } |
---|
1627 | |
---|
1628 | template<> inline byte rotlFixed<byte>(byte x, unsigned int y) |
---|
1629 | { |
---|
1630 | // Intrinsic, not bound to C/C++ language rules. |
---|
1631 | return _rotl8(x, static_cast<byte>(y)); |
---|
1632 | } |
---|
1633 | |
---|
1634 | template<> inline byte rotrFixed<byte>(byte x, unsigned int y) |
---|
1635 | { |
---|
1636 | // Intrinsic, not bound to C/C++ language rules. |
---|
1637 | return _rotr8(x, static_cast<byte>(y)); |
---|
1638 | } |
---|
1639 | |
---|
1640 | template<> inline byte rotlVariable<byte>(byte x, unsigned int y) |
---|
1641 | { |
---|
1642 | return _rotl8(x, static_cast<byte>(y)); |
---|
1643 | } |
---|
1644 | |
---|
1645 | template<> inline byte rotrVariable<byte>(byte x, unsigned int y) |
---|
1646 | { |
---|
1647 | return _rotr8(x, static_cast<byte>(y)); |
---|
1648 | } |
---|
1649 | |
---|
1650 | template<> inline byte rotlMod<byte>(byte x, unsigned int y) |
---|
1651 | { |
---|
1652 | return _rotl8(x, static_cast<byte>(y)); |
---|
1653 | } |
---|
1654 | |
---|
1655 | template<> inline byte rotrMod<byte>(byte x, unsigned int y) |
---|
1656 | { |
---|
1657 | return _rotr8(x, static_cast<byte>(y)); |
---|
1658 | } |
---|
1659 | |
---|
1660 | #endif // #if _MSC_VER >= 1400 |
---|
1661 | |
---|
1662 | #if (defined(__MWERKS__) && TARGET_CPU_PPC) |
---|
1663 | |
---|
1664 | template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y) |
---|
1665 | { |
---|
1666 | CRYPTOPP_ASSERT(y < 32); |
---|
1667 | return y ? __rlwinm(x,y,0,31) : x; |
---|
1668 | } |
---|
1669 | |
---|
1670 | template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y) |
---|
1671 | { |
---|
1672 | CRYPTOPP_ASSERT(y < 32); |
---|
1673 | return y ? __rlwinm(x,32-y,0,31) : x; |
---|
1674 | } |
---|
1675 | |
---|
1676 | template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y) |
---|
1677 | { |
---|
1678 | CRYPTOPP_ASSERT(y < 32); |
---|
1679 | return (__rlwnm(x,y,0,31)); |
---|
1680 | } |
---|
1681 | |
---|
1682 | template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y) |
---|
1683 | { |
---|
1684 | CRYPTOPP_ASSERT(y < 32); |
---|
1685 | return (__rlwnm(x,32-y,0,31)); |
---|
1686 | } |
---|
1687 | |
---|
1688 | template<> inline word32 rotlMod<word32>(word32 x, unsigned int y) |
---|
1689 | { |
---|
1690 | return (__rlwnm(x,y,0,31)); |
---|
1691 | } |
---|
1692 | |
---|
1693 | template<> inline word32 rotrMod<word32>(word32 x, unsigned int y) |
---|
1694 | { |
---|
1695 | return (__rlwnm(x,32-y,0,31)); |
---|
1696 | } |
---|
1697 | |
---|
1698 | #endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC) |
---|
1699 | |
---|
1700 | // ************** endian reversal *************** |
---|
1701 | |
---|
1702 | //! \brief Gets a byte from a value |
---|
1703 | //! \param order the ByteOrder of the value |
---|
1704 | //! \param value the value to retrieve the byte |
---|
1705 | //! \param index the location of the byte to retrieve |
---|
1706 | template <class T> |
---|
1707 | inline unsigned int GetByte(ByteOrder order, T value, unsigned int index) |
---|
1708 | { |
---|
1709 | if (order == LITTLE_ENDIAN_ORDER) |
---|
1710 | return GETBYTE(value, index); |
---|
1711 | else |
---|
1712 | return GETBYTE(value, sizeof(T)-index-1); |
---|
1713 | } |
---|
1714 | |
---|
1715 | //! \brief Reverses bytes in a 8-bit value |
---|
1716 | //! \param value the 8-bit value to reverse |
---|
1717 | //! \note ByteReverse returns the value passed to it since there is nothing to reverse |
---|
1718 | inline byte ByteReverse(byte value) |
---|
1719 | { |
---|
1720 | return value; |
---|
1721 | } |
---|
1722 | |
---|
1723 | //! \brief Reverses bytes in a 16-bit value |
---|
1724 | //! \brief Performs an endian reversal |
---|
1725 | //! \param value the 16-bit value to reverse |
---|
1726 | //! \details ByteReverse calls bswap if available. Otherwise the function performs a 8-bit rotate on the word16 |
---|
1727 | inline word16 ByteReverse(word16 value) |
---|
1728 | { |
---|
1729 | #ifdef CRYPTOPP_BYTESWAP_AVAILABLE |
---|
1730 | return bswap_16(value); |
---|
1731 | #elif defined(_MSC_VER) && _MSC_VER >= 1300 |
---|
1732 | return _byteswap_ushort(value); |
---|
1733 | #else |
---|
1734 | return rotlFixed(value, 8U); |
---|
1735 | #endif |
---|
1736 | } |
---|
1737 | |
---|
1738 | //! \brief Reverses bytes in a 32-bit value |
---|
1739 | //! \brief Performs an endian reversal |
---|
1740 | //! \param value the 32-bit value to reverse |
---|
1741 | //! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word32 |
---|
1742 | inline word32 ByteReverse(word32 value) |
---|
1743 | { |
---|
1744 | #if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) |
---|
1745 | __asm__ ("bswap %0" : "=r" (value) : "0" (value)); |
---|
1746 | return value; |
---|
1747 | #elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) |
---|
1748 | return bswap_32(value); |
---|
1749 | #elif defined(__MWERKS__) && TARGET_CPU_PPC |
---|
1750 | return (word32)__lwbrx(&value,0); |
---|
1751 | #elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL)) |
---|
1752 | return _byteswap_ulong(value); |
---|
1753 | #elif CRYPTOPP_FAST_ROTATE(32) |
---|
1754 | // 5 instructions with rotate instruction, 9 without |
---|
1755 | return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff); |
---|
1756 | #else |
---|
1757 | // 6 instructions with rotate instruction, 8 without |
---|
1758 | value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); |
---|
1759 | return rotlFixed(value, 16U); |
---|
1760 | #endif |
---|
1761 | } |
---|
1762 | |
---|
1763 | //! \brief Reverses bytes in a 64-bit value |
---|
1764 | //! \brief Performs an endian reversal |
---|
1765 | //! \param value the 64-bit value to reverse |
---|
1766 | //! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word64 |
---|
1767 | inline word64 ByteReverse(word64 value) |
---|
1768 | { |
---|
1769 | #if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__) |
---|
1770 | __asm__ ("bswap %0" : "=r" (value) : "0" (value)); |
---|
1771 | return value; |
---|
1772 | #elif defined(CRYPTOPP_BYTESWAP_AVAILABLE) |
---|
1773 | return bswap_64(value); |
---|
1774 | #elif defined(_MSC_VER) && _MSC_VER >= 1300 |
---|
1775 | return _byteswap_uint64(value); |
---|
1776 | #elif CRYPTOPP_BOOL_SLOW_WORD64 |
---|
1777 | return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32)); |
---|
1778 | #else |
---|
1779 | value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8); |
---|
1780 | value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16); |
---|
1781 | return rotlFixed(value, 32U); |
---|
1782 | #endif |
---|
1783 | } |
---|
1784 | |
---|
1785 | //! \brief Reverses bits in a 8-bit value |
---|
1786 | //! \param value the 8-bit value to reverse |
---|
1787 | //! \details BitReverse performs a combination of shifts on the byte |
---|
1788 | inline byte BitReverse(byte value) |
---|
1789 | { |
---|
1790 | value = byte((value & 0xAA) >> 1) | byte((value & 0x55) << 1); |
---|
1791 | value = byte((value & 0xCC) >> 2) | byte((value & 0x33) << 2); |
---|
1792 | return rotlFixed(value, 4U); |
---|
1793 | } |
---|
1794 | |
---|
1795 | //! \brief Reverses bits in a 16-bit value |
---|
1796 | //! \param value the 16-bit value to reverse |
---|
1797 | //! \details BitReverse performs a combination of shifts on the word16 |
---|
1798 | inline word16 BitReverse(word16 value) |
---|
1799 | { |
---|
1800 | value = word16((value & 0xAAAA) >> 1) | word16((value & 0x5555) << 1); |
---|
1801 | value = word16((value & 0xCCCC) >> 2) | word16((value & 0x3333) << 2); |
---|
1802 | value = word16((value & 0xF0F0) >> 4) | word16((value & 0x0F0F) << 4); |
---|
1803 | return ByteReverse(value); |
---|
1804 | } |
---|
1805 | |
---|
1806 | //! \brief Reverses bits in a 32-bit value |
---|
1807 | //! \param value the 32-bit value to reverse |
---|
1808 | //! \details BitReverse performs a combination of shifts on the word32 |
---|
1809 | inline word32 BitReverse(word32 value) |
---|
1810 | { |
---|
1811 | value = word32((value & 0xAAAAAAAA) >> 1) | word32((value & 0x55555555) << 1); |
---|
1812 | value = word32((value & 0xCCCCCCCC) >> 2) | word32((value & 0x33333333) << 2); |
---|
1813 | value = word32((value & 0xF0F0F0F0) >> 4) | word32((value & 0x0F0F0F0F) << 4); |
---|
1814 | return ByteReverse(value); |
---|
1815 | } |
---|
1816 | |
---|
1817 | //! \brief Reverses bits in a 64-bit value |
---|
1818 | //! \param value the 64-bit value to reverse |
---|
1819 | //! \details BitReverse performs a combination of shifts on the word64 |
---|
1820 | inline word64 BitReverse(word64 value) |
---|
1821 | { |
---|
1822 | #if CRYPTOPP_BOOL_SLOW_WORD64 |
---|
1823 | return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32)); |
---|
1824 | #else |
---|
1825 | value = word64((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | word64((value & W64LIT(0x5555555555555555)) << 1); |
---|
1826 | value = word64((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | word64((value & W64LIT(0x3333333333333333)) << 2); |
---|
1827 | value = word64((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | word64((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4); |
---|
1828 | return ByteReverse(value); |
---|
1829 | #endif |
---|
1830 | } |
---|
1831 | |
---|
1832 | //! \brief Reverses bits in a value |
---|
1833 | //! \param value the value to reverse |
---|
1834 | //! \details The template overload of BitReverse operates on signed and unsigned values. |
---|
1835 | //! Internally the size of T is checked, and then value is cast to a byte, |
---|
1836 | //! word16, word32 or word64. After the cast, the appropriate BitReverse |
---|
1837 | //! overload is called. |
---|
1838 | template <class T> |
---|
1839 | inline T BitReverse(T value) |
---|
1840 | { |
---|
1841 | if (sizeof(T) == 1) |
---|
1842 | return (T)BitReverse((byte)value); |
---|
1843 | else if (sizeof(T) == 2) |
---|
1844 | return (T)BitReverse((word16)value); |
---|
1845 | else if (sizeof(T) == 4) |
---|
1846 | return (T)BitReverse((word32)value); |
---|
1847 | else |
---|
1848 | { |
---|
1849 | CRYPTOPP_ASSERT(sizeof(T) == 8); |
---|
1850 | return (T)BitReverse((word64)value); |
---|
1851 | } |
---|
1852 | } |
---|
1853 | |
---|
1854 | //! \brief Reverses bytes in a value depending upon endianess |
---|
1855 | //! \tparam T the class or type |
---|
1856 | //! \param order the ByteOrder the data is represented |
---|
1857 | //! \param value the value to conditionally reverse |
---|
1858 | //! \details Internally, the ConditionalByteReverse calls NativeByteOrderIs. |
---|
1859 | //! If order matches native byte order, then the original value is returned. |
---|
1860 | //! If not, then ByteReverse is called on the value before returning to the caller. |
---|
1861 | template <class T> |
---|
1862 | inline T ConditionalByteReverse(ByteOrder order, T value) |
---|
1863 | { |
---|
1864 | return NativeByteOrderIs(order) ? value : ByteReverse(value); |
---|
1865 | } |
---|
1866 | |
---|
1867 | //! \brief Reverses bytes in an element from an array of elements |
---|
1868 | //! \tparam T the class or type |
---|
1869 | //! \param out the output array of elements |
---|
1870 | //! \param in the input array of elements |
---|
1871 | //! \param byteCount the total number of bytes in the array |
---|
1872 | //! \details Internally, ByteReverse visits each element in the in array |
---|
1873 | //! calls ByteReverse on it, and writes the result to out. |
---|
1874 | //! \details ByteReverse does not process tail byes, or bytes that are |
---|
1875 | //! \a not part of a full element. If T is int (and int is 4 bytes), then |
---|
1876 | //! <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are |
---|
1877 | //! reversed. |
---|
1878 | //! \details The follwoing program should help illustrate the behavior. |
---|
1879 | //! <pre>vector<word32> v1, v2; |
---|
1880 | //! |
---|
1881 | //! v1.push_back(1); |
---|
1882 | //! v1.push_back(2); |
---|
1883 | //! v1.push_back(3); |
---|
1884 | //! v1.push_back(4); |
---|
1885 | //! |
---|
1886 | //! v2.resize(v1.size()); |
---|
1887 | //! ByteReverse<word32>(&v2[0], &v1[0], 16); |
---|
1888 | //! |
---|
1889 | //! cout << "V1: "; |
---|
1890 | //! for(unsigned int i = 0; i < v1.size(); i++) |
---|
1891 | //! cout << std::hex << v1[i] << " "; |
---|
1892 | //! cout << endl; |
---|
1893 | //! |
---|
1894 | //! cout << "V2: "; |
---|
1895 | //! for(unsigned int i = 0; i < v2.size(); i++) |
---|
1896 | //! cout << std::hex << v2[i] << " "; |
---|
1897 | //! cout << endl;</pre> |
---|
1898 | //! The program above results in the follwoing output. |
---|
1899 | //! <pre>V1: 00000001 00000002 00000003 00000004 |
---|
1900 | //! V2: 01000000 02000000 03000000 04000000</pre> |
---|
1901 | //! \sa ConditionalByteReverse |
---|
1902 | template <class T> |
---|
1903 | void ByteReverse(T *out, const T *in, size_t byteCount) |
---|
1904 | { |
---|
1905 | CRYPTOPP_ASSERT(byteCount % sizeof(T) == 0); |
---|
1906 | size_t count = byteCount/sizeof(T); |
---|
1907 | for (size_t i=0; i<count; i++) |
---|
1908 | out[i] = ByteReverse(in[i]); |
---|
1909 | } |
---|
1910 | |
---|
1911 | //! \brief Conditionally reverses bytes in an element from an array of elements |
---|
1912 | //! \tparam T the class or type |
---|
1913 | //! \param order the ByteOrder the data is represented |
---|
1914 | //! \param out the output array of elements |
---|
1915 | //! \param in the input array of elements |
---|
1916 | //! \param byteCount the byte count of the arrays |
---|
1917 | //! \details Internally, ByteReverse visits each element in the in array |
---|
1918 | //! calls ByteReverse on it depending on the desired endianess, and writes the result to out. |
---|
1919 | //! \details ByteReverse does not process tail byes, or bytes that are |
---|
1920 | //! \a not part of a full element. If T is int (and int is 4 bytes), then |
---|
1921 | //! <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are |
---|
1922 | //! reversed. |
---|
1923 | //! \sa ByteReverse |
---|
1924 | template <class T> |
---|
1925 | inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount) |
---|
1926 | { |
---|
1927 | if (!NativeByteOrderIs(order)) |
---|
1928 | ByteReverse(out, in, byteCount); |
---|
1929 | else if (in != out) |
---|
1930 | memcpy_s(out, byteCount, in, byteCount); |
---|
1931 | } |
---|
1932 | |
---|
1933 | template <class T> |
---|
1934 | inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen) |
---|
1935 | { |
---|
1936 | const size_t U = sizeof(T); |
---|
1937 | CRYPTOPP_ASSERT(inlen <= outlen*U); |
---|
1938 | memcpy_s(out, outlen*U, in, inlen); |
---|
1939 | memset_z((byte *)out+inlen, 0, outlen*U-inlen); |
---|
1940 | ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U)); |
---|
1941 | } |
---|
1942 | |
---|
1943 | #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
---|
1944 | inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *) |
---|
1945 | { |
---|
1946 | CRYPTOPP_UNUSED(order); |
---|
1947 | return block[0]; |
---|
1948 | } |
---|
1949 | |
---|
1950 | inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *) |
---|
1951 | { |
---|
1952 | return (order == BIG_ENDIAN_ORDER) |
---|
1953 | ? block[1] | (block[0] << 8) |
---|
1954 | : block[0] | (block[1] << 8); |
---|
1955 | } |
---|
1956 | |
---|
1957 | inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *) |
---|
1958 | { |
---|
1959 | return (order == BIG_ENDIAN_ORDER) |
---|
1960 | ? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24) |
---|
1961 | : word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24); |
---|
1962 | } |
---|
1963 | |
---|
1964 | inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *) |
---|
1965 | { |
---|
1966 | return (order == BIG_ENDIAN_ORDER) |
---|
1967 | ? |
---|
1968 | (word64(block[7]) | |
---|
1969 | (word64(block[6]) << 8) | |
---|
1970 | (word64(block[5]) << 16) | |
---|
1971 | (word64(block[4]) << 24) | |
---|
1972 | (word64(block[3]) << 32) | |
---|
1973 | (word64(block[2]) << 40) | |
---|
1974 | (word64(block[1]) << 48) | |
---|
1975 | (word64(block[0]) << 56)) |
---|
1976 | : |
---|
1977 | (word64(block[0]) | |
---|
1978 | (word64(block[1]) << 8) | |
---|
1979 | (word64(block[2]) << 16) | |
---|
1980 | (word64(block[3]) << 24) | |
---|
1981 | (word64(block[4]) << 32) | |
---|
1982 | (word64(block[5]) << 40) | |
---|
1983 | (word64(block[6]) << 48) | |
---|
1984 | (word64(block[7]) << 56)); |
---|
1985 | } |
---|
1986 | |
---|
1987 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock) |
---|
1988 | { |
---|
1989 | CRYPTOPP_UNUSED(order); |
---|
1990 | block[0] = (byte)(xorBlock ? (value ^ xorBlock[0]) : value); |
---|
1991 | } |
---|
1992 | |
---|
1993 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock) |
---|
1994 | { |
---|
1995 | if (order == BIG_ENDIAN_ORDER) |
---|
1996 | { |
---|
1997 | if (xorBlock) |
---|
1998 | { |
---|
1999 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2000 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2001 | } |
---|
2002 | else |
---|
2003 | { |
---|
2004 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2005 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2006 | } |
---|
2007 | } |
---|
2008 | else |
---|
2009 | { |
---|
2010 | if (xorBlock) |
---|
2011 | { |
---|
2012 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2013 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2014 | } |
---|
2015 | else |
---|
2016 | { |
---|
2017 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2018 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2019 | } |
---|
2020 | } |
---|
2021 | } |
---|
2022 | |
---|
2023 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock) |
---|
2024 | { |
---|
2025 | if (order == BIG_ENDIAN_ORDER) |
---|
2026 | { |
---|
2027 | if (xorBlock) |
---|
2028 | { |
---|
2029 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2030 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2031 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2032 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2033 | } |
---|
2034 | else |
---|
2035 | { |
---|
2036 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2037 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2038 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2039 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2040 | } |
---|
2041 | } |
---|
2042 | else |
---|
2043 | { |
---|
2044 | if (xorBlock) |
---|
2045 | { |
---|
2046 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2047 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2048 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2049 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2050 | } |
---|
2051 | else |
---|
2052 | { |
---|
2053 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2054 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2055 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2056 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2057 | } |
---|
2058 | } |
---|
2059 | } |
---|
2060 | |
---|
2061 | inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock) |
---|
2062 | { |
---|
2063 | if (order == BIG_ENDIAN_ORDER) |
---|
2064 | { |
---|
2065 | if (xorBlock) |
---|
2066 | { |
---|
2067 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
---|
2068 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
---|
2069 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
---|
2070 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
---|
2071 | block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2072 | block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2073 | block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2074 | block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2075 | } |
---|
2076 | else |
---|
2077 | { |
---|
2078 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
---|
2079 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
---|
2080 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
---|
2081 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
---|
2082 | block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2083 | block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2084 | block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2085 | block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2086 | } |
---|
2087 | } |
---|
2088 | else |
---|
2089 | { |
---|
2090 | if (xorBlock) |
---|
2091 | { |
---|
2092 | block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2093 | block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2094 | block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2095 | block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2096 | block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
---|
2097 | block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
---|
2098 | block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
---|
2099 | block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
---|
2100 | } |
---|
2101 | else |
---|
2102 | { |
---|
2103 | block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0); |
---|
2104 | block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1); |
---|
2105 | block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2); |
---|
2106 | block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3); |
---|
2107 | block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4); |
---|
2108 | block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5); |
---|
2109 | block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6); |
---|
2110 | block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7); |
---|
2111 | } |
---|
2112 | } |
---|
2113 | } |
---|
2114 | #endif // #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
---|
2115 | |
---|
2116 | template <class T> |
---|
2117 | inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block) |
---|
2118 | { |
---|
2119 | //#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
---|
2120 | // if (!assumeAligned) |
---|
2121 | // return UnalignedGetWordNonTemplate(order, block, (T*)NULL); |
---|
2122 | // CRYPTOPP_ASSERT(IsAligned<T>(block)); |
---|
2123 | //#endif |
---|
2124 | // return ConditionalByteReverse(order, *reinterpret_cast<const T *>(block)); |
---|
2125 | CRYPTOPP_UNUSED(assumeAligned); |
---|
2126 | #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
---|
2127 | return ConditionalByteReverse(order, *reinterpret_cast<const T *>((const void *)block)); |
---|
2128 | #else |
---|
2129 | T temp; |
---|
2130 | memcpy(&temp, block, sizeof(T)); |
---|
2131 | return ConditionalByteReverse(order, temp); |
---|
2132 | #endif |
---|
2133 | } |
---|
2134 | |
---|
2135 | template <class T> |
---|
2136 | inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block) |
---|
2137 | { |
---|
2138 | result = GetWord<T>(assumeAligned, order, block); |
---|
2139 | } |
---|
2140 | |
---|
2141 | template <class T> |
---|
2142 | inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL) |
---|
2143 | { |
---|
2144 | //#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
---|
2145 | // if (!assumeAligned) |
---|
2146 | // return UnalignedbyteNonTemplate(order, block, value, xorBlock); |
---|
2147 | // CRYPTOPP_ASSERT(IsAligned<T>(block)); |
---|
2148 | // CRYPTOPP_ASSERT(IsAligned<T>(xorBlock)); |
---|
2149 | //#endif |
---|
2150 | // *reinterpret_cast<T *>(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>(xorBlock) : 0); |
---|
2151 | CRYPTOPP_UNUSED(assumeAligned); |
---|
2152 | #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS |
---|
2153 | *reinterpret_cast<T *>((void *)block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>((const void *)xorBlock) : 0); |
---|
2154 | #else |
---|
2155 | T t1, t2 = 0; |
---|
2156 | t1 = ConditionalByteReverse(order, value); |
---|
2157 | if (xorBlock) memcpy(&t2, xorBlock, sizeof(T)); |
---|
2158 | memmove(block, &(t1 ^= t2), sizeof(T)); |
---|
2159 | #endif |
---|
2160 | } |
---|
2161 | |
---|
2162 | //! \class GetBlock |
---|
2163 | //! \brief Access a block of memory |
---|
2164 | //! \tparam T class or type |
---|
2165 | //! \tparam B enumeration indicating endianess |
---|
2166 | //! \tparam A flag indicating alignment |
---|
2167 | //! \details GetBlock() provides alternate read access to a block of memory. The enumeration B is |
---|
2168 | //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. |
---|
2169 | //! Repeatedly applying operator() results in advancing in the block of memory. |
---|
2170 | //! \details An example of reading two word32 values from a block of memory is shown below. <tt>w1</tt> |
---|
2171 | //! will be <tt>0x03020100</tt> and <tt>w1</tt> will be <tt>0x07060504</tt>. |
---|
2172 | //! <pre> |
---|
2173 | //! word32 w1, w2; |
---|
2174 | //! byte buffer[8] = {0,1,2,3,4,5,6,7}; |
---|
2175 | //! GetBlock<word32, LittleEndian> block(buffer); |
---|
2176 | //! block(w1)(w2); |
---|
2177 | //! </pre> |
---|
2178 | template <class T, class B, bool A=false> |
---|
2179 | class GetBlock |
---|
2180 | { |
---|
2181 | public: |
---|
2182 | //! \brief Construct a GetBlock |
---|
2183 | //! \param block the memory block |
---|
2184 | GetBlock(const void *block) |
---|
2185 | : m_block((const byte *)block) {} |
---|
2186 | |
---|
2187 | //! \brief Access a block of memory |
---|
2188 | //! \tparam U class or type |
---|
2189 | //! \param x the value to read |
---|
2190 | //! \returns pointer to the remainder of the block after reading x |
---|
2191 | template <class U> |
---|
2192 | inline GetBlock<T, B, A> & operator()(U &x) |
---|
2193 | { |
---|
2194 | CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T)); |
---|
2195 | x = GetWord<T>(A, B::ToEnum(), m_block); |
---|
2196 | m_block += sizeof(T); |
---|
2197 | return *this; |
---|
2198 | } |
---|
2199 | |
---|
2200 | private: |
---|
2201 | const byte *m_block; |
---|
2202 | }; |
---|
2203 | |
---|
2204 | //! \class PutBlock |
---|
2205 | //! \brief Access a block of memory |
---|
2206 | //! \tparam T class or type |
---|
2207 | //! \tparam B enumeration indicating endianess |
---|
2208 | //! \tparam A flag indicating alignment |
---|
2209 | //! \details PutBlock() provides alternate write access to a block of memory. The enumeration B is |
---|
2210 | //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. |
---|
2211 | //! Repeatedly applying operator() results in advancing in the block of memory. |
---|
2212 | //! \details An example of writing two word32 values from a block of memory is shown below. After the code |
---|
2213 | //! executes, the byte buffer will be <tt>{0,1,2,3,4,5,6,7}</tt>. |
---|
2214 | //! <pre> |
---|
2215 | //! word32 w1=0x03020100, w2=0x07060504; |
---|
2216 | //! byte buffer[8]; |
---|
2217 | //! PutBlock<word32, LittleEndian> block(NULL, buffer); |
---|
2218 | //! block(w1)(w2); |
---|
2219 | //! </pre> |
---|
2220 | template <class T, class B, bool A=false> |
---|
2221 | class PutBlock |
---|
2222 | { |
---|
2223 | public: |
---|
2224 | //! \brief Construct a PutBlock |
---|
2225 | //! \param block the memory block |
---|
2226 | //! \param xorBlock optional mask |
---|
2227 | PutBlock(const void *xorBlock, void *block) |
---|
2228 | : m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {} |
---|
2229 | |
---|
2230 | //! \brief Access a block of memory |
---|
2231 | //! \tparam U class or type |
---|
2232 | //! \param x the value to write |
---|
2233 | //! \returns pointer to the remainder of the block after writing x |
---|
2234 | template <class U> |
---|
2235 | inline PutBlock<T, B, A> & operator()(U x) |
---|
2236 | { |
---|
2237 | PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock); |
---|
2238 | m_block += sizeof(T); |
---|
2239 | if (m_xorBlock) |
---|
2240 | m_xorBlock += sizeof(T); |
---|
2241 | return *this; |
---|
2242 | } |
---|
2243 | |
---|
2244 | private: |
---|
2245 | const byte *m_xorBlock; |
---|
2246 | byte *m_block; |
---|
2247 | }; |
---|
2248 | |
---|
2249 | //! \class BlockGetAndPut |
---|
2250 | //! \brief Access a block of memory |
---|
2251 | //! \tparam T class or type |
---|
2252 | //! \tparam B enumeration indicating endianess |
---|
2253 | //! \tparam GA flag indicating alignment for the Get operation |
---|
2254 | //! \tparam PA flag indicating alignment for the Put operation |
---|
2255 | //! \details GetBlock() provides alternate write access to a block of memory. The enumeration B is |
---|
2256 | //! BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T. |
---|
2257 | //! \sa GetBlock() and PutBlock(). |
---|
2258 | template <class T, class B, bool GA=false, bool PA=false> |
---|
2259 | struct BlockGetAndPut |
---|
2260 | { |
---|
2261 | // function needed because of C++ grammatical ambiguity between expression-statements and declarations |
---|
2262 | static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);} |
---|
2263 | typedef PutBlock<T, B, PA> Put; |
---|
2264 | }; |
---|
2265 | |
---|
2266 | template <class T> |
---|
2267 | std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER) |
---|
2268 | { |
---|
2269 | if (!NativeByteOrderIs(order)) |
---|
2270 | value = ByteReverse(value); |
---|
2271 | |
---|
2272 | return std::string((char *)&value, sizeof(value)); |
---|
2273 | } |
---|
2274 | |
---|
2275 | template <class T> |
---|
2276 | T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER) |
---|
2277 | { |
---|
2278 | T value = 0; |
---|
2279 | memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value))); |
---|
2280 | return NativeByteOrderIs(order) ? value : ByteReverse(value); |
---|
2281 | } |
---|
2282 | |
---|
2283 | // ************** help remove warning on g++ *************** |
---|
2284 | |
---|
2285 | //! \class SafeShifter |
---|
2286 | //! \brief Safely shift values when undefined behavior could occur |
---|
2287 | //! \tparam overflow boolean flag indicating if overflow is present |
---|
2288 | //! \details SafeShifter safely shifts values when undefined behavior could occur under C/C++ rules. |
---|
2289 | //! The class behaves much like a saturating arithmetic class, clamping values rather than allowing |
---|
2290 | //! the compiler to remove undefined behavior. |
---|
2291 | //! \sa SafeShifter<true>, SafeShifter<false> |
---|
2292 | template <bool overflow> struct SafeShifter; |
---|
2293 | |
---|
2294 | //! \class SafeShifter<true> |
---|
2295 | //! \brief Shifts a value in the presence of overflow |
---|
2296 | //! \details the \p true template parameter indicates overflow would occur. |
---|
2297 | //! In this case, SafeShifter clamps the value and returns 0. |
---|
2298 | template<> struct SafeShifter<true> |
---|
2299 | { |
---|
2300 | //! \brief Right shifts a value that overflows |
---|
2301 | //! \tparam T class or type |
---|
2302 | //! \return 0 |
---|
2303 | //! \details Since <tt>overflow == true</tt>, the value 0 is always returned. |
---|
2304 | //! \sa SafeLeftShift |
---|
2305 | template <class T> |
---|
2306 | static inline T RightShift(T value, unsigned int bits) |
---|
2307 | { |
---|
2308 | CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits); |
---|
2309 | return 0; |
---|
2310 | } |
---|
2311 | |
---|
2312 | //! \brief Left shifts a value that overflows |
---|
2313 | //! \tparam T class or type |
---|
2314 | //! \return 0 |
---|
2315 | //! \details Since <tt>overflow == true</tt>, the value 0 is always returned. |
---|
2316 | //! \sa SafeRightShift |
---|
2317 | template <class T> |
---|
2318 | static inline T LeftShift(T value, unsigned int bits) |
---|
2319 | { |
---|
2320 | CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits); |
---|
2321 | return 0; |
---|
2322 | } |
---|
2323 | }; |
---|
2324 | |
---|
2325 | //! \class SafeShifter<false> |
---|
2326 | //! \brief Shifts a value in the absence of overflow |
---|
2327 | //! \details the \p false template parameter indicates overflow would \a not occur. |
---|
2328 | //! In this case, SafeShifter returns the shfted value. |
---|
2329 | template<> struct SafeShifter<false> |
---|
2330 | { |
---|
2331 | //! \brief Right shifts a value that does not overflow |
---|
2332 | //! \tparam T class or type |
---|
2333 | //! \return the shifted value |
---|
2334 | //! \details Since <tt>overflow == false</tt>, the shifted value is returned. |
---|
2335 | //! \sa SafeLeftShift |
---|
2336 | template <class T> |
---|
2337 | static inline T RightShift(T value, unsigned int bits) |
---|
2338 | { |
---|
2339 | return value >> bits; |
---|
2340 | } |
---|
2341 | |
---|
2342 | //! \brief Left shifts a value that does not overflow |
---|
2343 | //! \tparam T class or type |
---|
2344 | //! \return the shifted value |
---|
2345 | //! \details Since <tt>overflow == false</tt>, the shifted value is returned. |
---|
2346 | //! \sa SafeRightShift |
---|
2347 | template <class T> |
---|
2348 | static inline T LeftShift(T value, unsigned int bits) |
---|
2349 | { |
---|
2350 | return value << bits; |
---|
2351 | } |
---|
2352 | }; |
---|
2353 | |
---|
2354 | //! \class SafeRightShift |
---|
2355 | //! \brief Safely right shift values when undefined behavior could occur |
---|
2356 | //! \tparam bits the number of bit positions to shift the value |
---|
2357 | //! \tparam T class or type |
---|
2358 | //! \param value the value to right shift |
---|
2359 | //! \result the shifted value or 0 |
---|
2360 | //! \details SafeRightShift safely shifts the value to the right when undefined behavior |
---|
2361 | //! could occur under C/C++ rules. SafeRightShift will return the shifted value or 0 |
---|
2362 | //! if undefined behavior would occur. |
---|
2363 | template <unsigned int bits, class T> |
---|
2364 | inline T SafeRightShift(T value) |
---|
2365 | { |
---|
2366 | return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits); |
---|
2367 | } |
---|
2368 | |
---|
2369 | //! \class SafeLeftShift |
---|
2370 | //! \brief Safely left shift values when undefined behavior could occur |
---|
2371 | //! \tparam bits the number of bit positions to shift the value |
---|
2372 | //! \tparam T class or type |
---|
2373 | //! \param value the value to left shift |
---|
2374 | //! \result the shifted value or 0 |
---|
2375 | //! \details SafeLeftShift safely shifts the value to the left when undefined behavior |
---|
2376 | //! could occur under C/C++ rules. SafeLeftShift will return the shifted value or 0 |
---|
2377 | //! if undefined behavior would occur. |
---|
2378 | template <unsigned int bits, class T> |
---|
2379 | inline T SafeLeftShift(T value) |
---|
2380 | { |
---|
2381 | return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits); |
---|
2382 | } |
---|
2383 | |
---|
2384 | // ************** use one buffer for multiple data members *************** |
---|
2385 | |
---|
2386 | #define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2387 | #define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2388 | #define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2389 | #define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2390 | #define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2391 | #define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2392 | #define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2393 | #define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} |
---|
2394 | #define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate; |
---|
2395 | |
---|
2396 | NAMESPACE_END |
---|
2397 | |
---|
2398 | #if CRYPTOPP_MSC_VERSION |
---|
2399 | # pragma warning(pop) |
---|
2400 | #endif |
---|
2401 | |
---|
2402 | #endif |
---|