1 | // integer.h - written and placed in the public domain by Wei Dai |
---|
2 | |
---|
3 | //! \file integer.h |
---|
4 | //! \brief Multiple precision integer with arithmetic operations |
---|
5 | //! \details The Integer class can represent positive and negative integers |
---|
6 | //! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>. |
---|
7 | //! \details Internally, the library uses a sign magnitude representation, and the class |
---|
8 | //! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is |
---|
9 | //! used to hold the representation. The second is a Sign, and its is used to track |
---|
10 | //! the sign of the Integer. |
---|
11 | |
---|
12 | #ifndef CRYPTOPP_INTEGER_H |
---|
13 | #define CRYPTOPP_INTEGER_H |
---|
14 | |
---|
15 | #include "cryptlib.h" |
---|
16 | #include "secblock.h" |
---|
17 | #include "stdcpp.h" |
---|
18 | |
---|
19 | #include <iosfwd> |
---|
20 | |
---|
21 | NAMESPACE_BEGIN(CryptoPP) |
---|
22 | |
---|
23 | //! \struct InitializeInteger |
---|
24 | //! Performs static intialization of the Integer class |
---|
25 | struct InitializeInteger |
---|
26 | { |
---|
27 | InitializeInteger(); |
---|
28 | }; |
---|
29 | |
---|
30 | // http://github.com/weidai11/cryptopp/issues/256 |
---|
31 | #if defined(CRYPTOPP_WORD128_AVAILABLE) |
---|
32 | typedef SecBlock<word, AllocatorWithCleanup<word, true> > IntegerSecBlock; |
---|
33 | #else |
---|
34 | typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock; |
---|
35 | #endif |
---|
36 | |
---|
37 | //! \brief Multiple precision integer with arithmetic operations |
---|
38 | //! \details The Integer class can represent positive and negative integers |
---|
39 | //! with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>. |
---|
40 | //! \details Internally, the library uses a sign magnitude representation, and the class |
---|
41 | //! has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is |
---|
42 | //! used to hold the representation. The second is a Sign, and its is used to track |
---|
43 | //! the sign of the Integer. |
---|
44 | //! \nosubgrouping |
---|
45 | class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object |
---|
46 | { |
---|
47 | public: |
---|
48 | //! \name ENUMS, EXCEPTIONS, and TYPEDEFS |
---|
49 | //@{ |
---|
50 | //! \brief Exception thrown when division by 0 is encountered |
---|
51 | class DivideByZero : public Exception |
---|
52 | { |
---|
53 | public: |
---|
54 | DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {} |
---|
55 | }; |
---|
56 | |
---|
57 | //! \brief Exception thrown when a random number cannot be found that |
---|
58 | //! satisfies the condition |
---|
59 | class RandomNumberNotFound : public Exception |
---|
60 | { |
---|
61 | public: |
---|
62 | RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {} |
---|
63 | }; |
---|
64 | |
---|
65 | //! \enum Sign |
---|
66 | //! \brief Used internally to represent the integer |
---|
67 | //! \details Sign is used internally to represent the integer. It is also used in a few API functions. |
---|
68 | //! \sa Signedness |
---|
69 | enum Sign { |
---|
70 | //! \brief the value is positive or 0 |
---|
71 | POSITIVE=0, |
---|
72 | //! \brief the value is negative |
---|
73 | NEGATIVE=1}; |
---|
74 | |
---|
75 | //! \enum Signedness |
---|
76 | //! \brief Used when importing and exporting integers |
---|
77 | //! \details Signedness is usually used in API functions. |
---|
78 | //! \sa Sign |
---|
79 | enum Signedness { |
---|
80 | //! \brief an unsigned value |
---|
81 | UNSIGNED, |
---|
82 | //! \brief a signed value |
---|
83 | SIGNED}; |
---|
84 | |
---|
85 | //! \enum RandomNumberType |
---|
86 | //! \brief Properties of a random integer |
---|
87 | enum RandomNumberType { |
---|
88 | //! \brief a number with no special properties |
---|
89 | ANY, |
---|
90 | //! \brief a number which is probabilistically prime |
---|
91 | PRIME}; |
---|
92 | //@} |
---|
93 | |
---|
94 | //! \name CREATORS |
---|
95 | //@{ |
---|
96 | //! \brief Creates the zero integer |
---|
97 | Integer(); |
---|
98 | |
---|
99 | //! copy constructor |
---|
100 | Integer(const Integer& t); |
---|
101 | |
---|
102 | //! \brief Convert from signed long |
---|
103 | Integer(signed long value); |
---|
104 | |
---|
105 | //! \brief Convert from lword |
---|
106 | //! \param sign enumeration indicating Sign |
---|
107 | //! \param value the long word |
---|
108 | Integer(Sign sign, lword value); |
---|
109 | |
---|
110 | //! \brief Convert from two words |
---|
111 | //! \param sign enumeration indicating Sign |
---|
112 | //! \param highWord the high word |
---|
113 | //! \param lowWord the low word |
---|
114 | Integer(Sign sign, word highWord, word lowWord); |
---|
115 | |
---|
116 | //! \brief Convert from a C-string |
---|
117 | //! \param str C-string value |
---|
118 | //! \param order byte order |
---|
119 | //! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case |
---|
120 | //! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10. |
---|
121 | //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian |
---|
122 | //! integers with curve25519, Poly1305 and Microsoft CAPI. |
---|
123 | explicit Integer(const char *str, ByteOrder order = BIG_ENDIAN_ORDER); |
---|
124 | |
---|
125 | //! \brief Convert from a wide C-string |
---|
126 | //! \param str wide C-string value |
---|
127 | //! \param order byte order |
---|
128 | //! \details \p str can be in base 2, 8, 10, or 16. Base is determined by a case |
---|
129 | //! insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10. |
---|
130 | //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian |
---|
131 | //! integers with curve25519, Poly1305 and Microsoft CAPI. |
---|
132 | explicit Integer(const wchar_t *str, ByteOrder order = BIG_ENDIAN_ORDER); |
---|
133 | |
---|
134 | //! \brief Convert from a big-endian byte array |
---|
135 | //! \param encodedInteger big-endian byte array |
---|
136 | //! \param byteCount length of the byte array |
---|
137 | //! \param sign enumeration indicating Signedness |
---|
138 | //! \param order byte order |
---|
139 | //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian |
---|
140 | //! integers with curve25519, Poly1305 and Microsoft CAPI. |
---|
141 | Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER); |
---|
142 | |
---|
143 | //! \brief Convert from a big-endian array |
---|
144 | //! \param bt BufferedTransformation object with big-endian byte array |
---|
145 | //! \param byteCount length of the byte array |
---|
146 | //! \param sign enumeration indicating Signedness |
---|
147 | //! \param order byte order |
---|
148 | //! \details Byte order was added at Crypto++ 5.7 to allow use of little-endian |
---|
149 | //! integers with curve25519, Poly1305 and Microsoft CAPI. |
---|
150 | Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER); |
---|
151 | |
---|
152 | //! \brief Convert from a BER encoded byte array |
---|
153 | //! \param bt BufferedTransformation object with BER encoded byte array |
---|
154 | explicit Integer(BufferedTransformation &bt); |
---|
155 | |
---|
156 | //! \brief Create a random integer |
---|
157 | //! \param rng RandomNumberGenerator used to generate material |
---|
158 | //! \param bitCount the number of bits in the resulting integer |
---|
159 | //! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>. |
---|
160 | Integer(RandomNumberGenerator &rng, size_t bitCount); |
---|
161 | |
---|
162 | //! \brief Integer representing 0 |
---|
163 | //! \returns an Integer representing 0 |
---|
164 | //! \details Zero() avoids calling constructors for frequently used integers |
---|
165 | static const Integer & CRYPTOPP_API Zero(); |
---|
166 | //! \brief Integer representing 1 |
---|
167 | //! \returns an Integer representing 1 |
---|
168 | //! \details One() avoids calling constructors for frequently used integers |
---|
169 | static const Integer & CRYPTOPP_API One(); |
---|
170 | //! \brief Integer representing 2 |
---|
171 | //! \returns an Integer representing 2 |
---|
172 | //! \details Two() avoids calling constructors for frequently used integers |
---|
173 | static const Integer & CRYPTOPP_API Two(); |
---|
174 | |
---|
175 | //! \brief Create a random integer of special form |
---|
176 | //! \param rng RandomNumberGenerator used to generate material |
---|
177 | //! \param min the minimum value |
---|
178 | //! \param max the maximum value |
---|
179 | //! \param rnType RandomNumberType to specify the type |
---|
180 | //! \param equiv the equivalence class based on the parameter \p mod |
---|
181 | //! \param mod the modulus used to reduce the equivalence class |
---|
182 | //! \throw RandomNumberNotFound if the set is empty. |
---|
183 | //! \details Ideally, the random integer created should be uniformly distributed |
---|
184 | //! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>. |
---|
185 | //! However the actual distribution may not be uniform because sequential |
---|
186 | //! search is used to find an appropriate number from a random starting |
---|
187 | //! point. |
---|
188 | //! \details May return (with very small probability) a pseudoprime when a prime |
---|
189 | //! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime |
---|
190 | //! is declared in nbtheory.h. |
---|
191 | Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One()); |
---|
192 | |
---|
193 | //! \brief Exponentiates to a power of 2 |
---|
194 | //! \returns the Integer 2<sup>e</sup> |
---|
195 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
196 | static Integer CRYPTOPP_API Power2(size_t e); |
---|
197 | //@} |
---|
198 | |
---|
199 | //! \name ENCODE/DECODE |
---|
200 | //@{ |
---|
201 | //! \brief The minimum number of bytes to encode this integer |
---|
202 | //! \param sign enumeration indicating Signedness |
---|
203 | //! \note The MinEncodedSize() of 0 is 1. |
---|
204 | size_t MinEncodedSize(Signedness sign=UNSIGNED) const; |
---|
205 | |
---|
206 | //! \brief Encode in big-endian format |
---|
207 | //! \param output big-endian byte array |
---|
208 | //! \param outputLen length of the byte array |
---|
209 | //! \param sign enumeration indicating Signedness |
---|
210 | //! \details Unsigned means encode absolute value, signed means encode two's complement if negative. |
---|
211 | //! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a |
---|
212 | //! minimum size). An exact size is useful, for example, when encoding to a field element size. |
---|
213 | void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const; |
---|
214 | |
---|
215 | //! \brief Encode in big-endian format |
---|
216 | //! \param bt BufferedTransformation object |
---|
217 | //! \param outputLen length of the encoding |
---|
218 | //! \param sign enumeration indicating Signedness |
---|
219 | //! \details Unsigned means encode absolute value, signed means encode two's complement if negative. |
---|
220 | //! \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a |
---|
221 | //! minimum size). An exact size is useful, for example, when encoding to a field element size. |
---|
222 | void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const; |
---|
223 | |
---|
224 | //! \brief Encode in DER format |
---|
225 | //! \param bt BufferedTransformation object |
---|
226 | //! \details Encodes the Integer using Distinguished Encoding Rules |
---|
227 | //! The result is placed into a BufferedTransformation object |
---|
228 | void DEREncode(BufferedTransformation &bt) const; |
---|
229 | |
---|
230 | //! encode absolute value as big-endian octet string |
---|
231 | //! \param bt BufferedTransformation object |
---|
232 | //! \param length the number of mytes to decode |
---|
233 | void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; |
---|
234 | |
---|
235 | //! \brief Encode absolute value in OpenPGP format |
---|
236 | //! \param output big-endian byte array |
---|
237 | //! \param bufferSize length of the byte array |
---|
238 | //! \returns length of the output |
---|
239 | //! \details OpenPGPEncode places result into a BufferedTransformation object and returns the |
---|
240 | //! number of bytes used for the encoding |
---|
241 | size_t OpenPGPEncode(byte *output, size_t bufferSize) const; |
---|
242 | |
---|
243 | //! \brief Encode absolute value in OpenPGP format |
---|
244 | //! \param bt BufferedTransformation object |
---|
245 | //! \returns length of the output |
---|
246 | //! \details OpenPGPEncode places result into a BufferedTransformation object and returns the |
---|
247 | //! number of bytes used for the encoding |
---|
248 | size_t OpenPGPEncode(BufferedTransformation &bt) const; |
---|
249 | |
---|
250 | //! \brief Decode from big-endian byte array |
---|
251 | //! \param input big-endian byte array |
---|
252 | //! \param inputLen length of the byte array |
---|
253 | //! \param sign enumeration indicating Signedness |
---|
254 | void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED); |
---|
255 | |
---|
256 | //! \brief Decode nonnegative value from big-endian byte array |
---|
257 | //! \param bt BufferedTransformation object |
---|
258 | //! \param inputLen length of the byte array |
---|
259 | //! \param sign enumeration indicating Signedness |
---|
260 | //! \note <tt>bt.MaxRetrievable() \>= inputLen</tt>. |
---|
261 | void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED); |
---|
262 | |
---|
263 | //! \brief Decode from BER format |
---|
264 | //! \param input big-endian byte array |
---|
265 | //! \param inputLen length of the byte array |
---|
266 | void BERDecode(const byte *input, size_t inputLen); |
---|
267 | |
---|
268 | //! \brief Decode from BER format |
---|
269 | //! \param bt BufferedTransformation object |
---|
270 | void BERDecode(BufferedTransformation &bt); |
---|
271 | |
---|
272 | //! \brief Decode nonnegative value from big-endian octet string |
---|
273 | //! \param bt BufferedTransformation object |
---|
274 | //! \param length length of the byte array |
---|
275 | void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); |
---|
276 | |
---|
277 | //! \brief Exception thrown when an error is encountered decoding an OpenPGP integer |
---|
278 | class OpenPGPDecodeErr : public Exception |
---|
279 | { |
---|
280 | public: |
---|
281 | OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {} |
---|
282 | }; |
---|
283 | |
---|
284 | //! \brief Decode from OpenPGP format |
---|
285 | //! \param input big-endian byte array |
---|
286 | //! \param inputLen length of the byte array |
---|
287 | void OpenPGPDecode(const byte *input, size_t inputLen); |
---|
288 | //! \brief Decode from OpenPGP format |
---|
289 | //! \param bt BufferedTransformation object |
---|
290 | void OpenPGPDecode(BufferedTransformation &bt); |
---|
291 | //@} |
---|
292 | |
---|
293 | //! \name ACCESSORS |
---|
294 | //@{ |
---|
295 | //! \brief Determines if the Integer is convertable to Long |
---|
296 | //! \returns true if *this can be represented as a signed long |
---|
297 | //! \sa ConvertToLong() |
---|
298 | bool IsConvertableToLong() const; |
---|
299 | //! \brief Convert the Integer to Long |
---|
300 | //! \return equivalent signed long if possible, otherwise undefined |
---|
301 | //! \sa IsConvertableToLong() |
---|
302 | signed long ConvertToLong() const; |
---|
303 | |
---|
304 | //! \brief Determines the number of bits required to represent the Integer |
---|
305 | //! \returns number of significant bits = floor(log2(abs(*this))) + 1 |
---|
306 | unsigned int BitCount() const; |
---|
307 | //! \brief Determines the number of bytes required to represent the Integer |
---|
308 | //! \returns number of significant bytes = ceiling(BitCount()/8) |
---|
309 | unsigned int ByteCount() const; |
---|
310 | //! \brief Determines the number of words required to represent the Integer |
---|
311 | //! \returns number of significant words = ceiling(ByteCount()/sizeof(word)) |
---|
312 | unsigned int WordCount() const; |
---|
313 | |
---|
314 | //! \brief Provides the i-th bit of the Integer |
---|
315 | //! \returns the i-th bit, i=0 being the least significant bit |
---|
316 | bool GetBit(size_t i) const; |
---|
317 | //! \brief Provides the i-th byte of the Integer |
---|
318 | //! \returns the i-th byte |
---|
319 | byte GetByte(size_t i) const; |
---|
320 | //! \brief Provides the low order bits of the Integer |
---|
321 | //! \returns n lowest bits of *this >> i |
---|
322 | lword GetBits(size_t i, size_t n) const; |
---|
323 | |
---|
324 | //! \brief Determines if the Integer is 0 |
---|
325 | //! \returns true if the Integer is 0, false otherwise |
---|
326 | bool IsZero() const {return !*this;} |
---|
327 | //! \brief Determines if the Integer is non-0 |
---|
328 | //! \returns true if the Integer is non-0, false otherwise |
---|
329 | bool NotZero() const {return !IsZero();} |
---|
330 | //! \brief Determines if the Integer is negative |
---|
331 | //! \returns true if the Integer is negative, false otherwise |
---|
332 | bool IsNegative() const {return sign == NEGATIVE;} |
---|
333 | //! \brief Determines if the Integer is non-negative |
---|
334 | //! \returns true if the Integer is non-negative, false otherwise |
---|
335 | bool NotNegative() const {return !IsNegative();} |
---|
336 | //! \brief Determines if the Integer is positive |
---|
337 | //! \returns true if the Integer is positive, false otherwise |
---|
338 | bool IsPositive() const {return NotNegative() && NotZero();} |
---|
339 | //! \brief Determines if the Integer is non-positive |
---|
340 | //! \returns true if the Integer is non-positive, false otherwise |
---|
341 | bool NotPositive() const {return !IsPositive();} |
---|
342 | //! \brief Determines if the Integer is even parity |
---|
343 | //! \returns true if the Integer is even, false otherwise |
---|
344 | bool IsEven() const {return GetBit(0) == 0;} |
---|
345 | //! \brief Determines if the Integer is odd parity |
---|
346 | //! \returns true if the Integer is odd, false otherwise |
---|
347 | bool IsOdd() const {return GetBit(0) == 1;} |
---|
348 | //@} |
---|
349 | |
---|
350 | //! \name MANIPULATORS |
---|
351 | //@{ |
---|
352 | //! |
---|
353 | Integer& operator=(const Integer& t); |
---|
354 | |
---|
355 | //! |
---|
356 | Integer& operator+=(const Integer& t); |
---|
357 | //! |
---|
358 | Integer& operator-=(const Integer& t); |
---|
359 | //! |
---|
360 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
361 | Integer& operator*=(const Integer& t) {return *this = Times(t);} |
---|
362 | //! |
---|
363 | Integer& operator/=(const Integer& t) {return *this = DividedBy(t);} |
---|
364 | //! |
---|
365 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
366 | Integer& operator%=(const Integer& t) {return *this = Modulo(t);} |
---|
367 | //! |
---|
368 | Integer& operator/=(word t) {return *this = DividedBy(t);} |
---|
369 | //! |
---|
370 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
371 | Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));} |
---|
372 | |
---|
373 | //! |
---|
374 | Integer& operator<<=(size_t); |
---|
375 | //! |
---|
376 | Integer& operator>>=(size_t); |
---|
377 | |
---|
378 | //! \brief Set this Integer to random integer |
---|
379 | //! \param rng RandomNumberGenerator used to generate material |
---|
380 | //! \param bitCount the number of bits in the resulting integer |
---|
381 | //! \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>. |
---|
382 | void Randomize(RandomNumberGenerator &rng, size_t bitCount); |
---|
383 | |
---|
384 | //! \brief Set this Integer to random integer |
---|
385 | //! \param rng RandomNumberGenerator used to generate material |
---|
386 | //! \param min the minimum value |
---|
387 | //! \param max the maximum value |
---|
388 | //! \details The random integer created is uniformly distributed over <tt>[min, max]</tt>. |
---|
389 | void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max); |
---|
390 | |
---|
391 | //! \brief Set this Integer to random integer of special form |
---|
392 | //! \param rng RandomNumberGenerator used to generate material |
---|
393 | //! \param min the minimum value |
---|
394 | //! \param max the maximum value |
---|
395 | //! \param rnType RandomNumberType to specify the type |
---|
396 | //! \param equiv the equivalence class based on the parameter \p mod |
---|
397 | //! \param mod the modulus used to reduce the equivalence class |
---|
398 | //! \throw RandomNumberNotFound if the set is empty. |
---|
399 | //! \details Ideally, the random integer created should be uniformly distributed |
---|
400 | //! over <tt>{x | min \<= x \<= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>. |
---|
401 | //! However the actual distribution may not be uniform because sequential |
---|
402 | //! search is used to find an appropriate number from a random starting |
---|
403 | //! point. |
---|
404 | //! \details May return (with very small probability) a pseudoprime when a prime |
---|
405 | //! is requested and <tt>max \> lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime |
---|
406 | //! is declared in nbtheory.h. |
---|
407 | bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One()); |
---|
408 | |
---|
409 | bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs); |
---|
410 | void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs) |
---|
411 | { |
---|
412 | if (!GenerateRandomNoThrow(rng, params)) |
---|
413 | throw RandomNumberNotFound(); |
---|
414 | } |
---|
415 | |
---|
416 | //! \brief Set the n-th bit to value |
---|
417 | //! \details 0-based numbering. |
---|
418 | void SetBit(size_t n, bool value=1); |
---|
419 | |
---|
420 | //! \brief Set the n-th byte to value |
---|
421 | //! \details 0-based numbering. |
---|
422 | void SetByte(size_t n, byte value); |
---|
423 | |
---|
424 | //! \brief Reverse the Sign of the Integer |
---|
425 | void Negate(); |
---|
426 | |
---|
427 | //! \brief Sets the Integer to positive |
---|
428 | void SetPositive() {sign = POSITIVE;} |
---|
429 | |
---|
430 | //! \brief Sets the Integer to negative |
---|
431 | void SetNegative() {if (!!(*this)) sign = NEGATIVE;} |
---|
432 | |
---|
433 | //! \brief Swaps this Integer with another Integer |
---|
434 | void swap(Integer &a); |
---|
435 | //@} |
---|
436 | |
---|
437 | //! \name UNARY OPERATORS |
---|
438 | //@{ |
---|
439 | //! |
---|
440 | bool operator!() const; |
---|
441 | //! |
---|
442 | Integer operator+() const {return *this;} |
---|
443 | //! |
---|
444 | Integer operator-() const; |
---|
445 | //! |
---|
446 | Integer& operator++(); |
---|
447 | //! |
---|
448 | Integer& operator--(); |
---|
449 | //! |
---|
450 | Integer operator++(int) {Integer temp = *this; ++*this; return temp;} |
---|
451 | //! |
---|
452 | Integer operator--(int) {Integer temp = *this; --*this; return temp;} |
---|
453 | //@} |
---|
454 | |
---|
455 | //! \name BINARY OPERATORS |
---|
456 | //@{ |
---|
457 | //! \brief Perform signed comparison |
---|
458 | //! \param a the Integer to comapre |
---|
459 | //! \retval -1 if <tt>*this < a</tt> |
---|
460 | //! \retval 0 if <tt>*this = a</tt> |
---|
461 | //! \retval 1 if <tt>*this > a</tt> |
---|
462 | int Compare(const Integer& a) const; |
---|
463 | |
---|
464 | //! |
---|
465 | Integer Plus(const Integer &b) const; |
---|
466 | //! |
---|
467 | Integer Minus(const Integer &b) const; |
---|
468 | //! |
---|
469 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
470 | Integer Times(const Integer &b) const; |
---|
471 | //! |
---|
472 | Integer DividedBy(const Integer &b) const; |
---|
473 | //! |
---|
474 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
475 | Integer Modulo(const Integer &b) const; |
---|
476 | //! |
---|
477 | Integer DividedBy(word b) const; |
---|
478 | //! |
---|
479 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
480 | word Modulo(word b) const; |
---|
481 | |
---|
482 | //! |
---|
483 | Integer operator>>(size_t n) const {return Integer(*this)>>=n;} |
---|
484 | //! |
---|
485 | Integer operator<<(size_t n) const {return Integer(*this)<<=n;} |
---|
486 | //@} |
---|
487 | |
---|
488 | //! \name OTHER ARITHMETIC FUNCTIONS |
---|
489 | //@{ |
---|
490 | //! |
---|
491 | Integer AbsoluteValue() const; |
---|
492 | //! |
---|
493 | Integer Doubled() const {return Plus(*this);} |
---|
494 | //! |
---|
495 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
496 | Integer Squared() const {return Times(*this);} |
---|
497 | //! extract square root, if negative return 0, else return floor of square root |
---|
498 | Integer SquareRoot() const; |
---|
499 | //! return whether this integer is a perfect square |
---|
500 | bool IsSquare() const; |
---|
501 | |
---|
502 | //! is 1 or -1 |
---|
503 | bool IsUnit() const; |
---|
504 | //! return inverse if 1 or -1, otherwise return 0 |
---|
505 | Integer MultiplicativeInverse() const; |
---|
506 | |
---|
507 | //! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d)) |
---|
508 | static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d); |
---|
509 | //! use a faster division algorithm when divisor is short |
---|
510 | static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d); |
---|
511 | |
---|
512 | //! returns same result as Divide(r, q, a, Power2(n)), but faster |
---|
513 | static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n); |
---|
514 | |
---|
515 | //! greatest common divisor |
---|
516 | static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n); |
---|
517 | //! calculate multiplicative inverse of *this mod n |
---|
518 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
519 | Integer InverseMod(const Integer &n) const; |
---|
520 | //! |
---|
521 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
522 | word InverseMod(word n) const; |
---|
523 | //@} |
---|
524 | |
---|
525 | //! \name INPUT/OUTPUT |
---|
526 | //@{ |
---|
527 | //! \brief Extraction operator |
---|
528 | //! \param in a reference to a std::istream |
---|
529 | //! \param a a reference to an Integer |
---|
530 | //! \returns a reference to a std::istream reference |
---|
531 | friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a); |
---|
532 | //! |
---|
533 | //! \brief Insertion operator |
---|
534 | //! \param out a reference to a std::ostream |
---|
535 | //! \param a a constant reference to an Integer |
---|
536 | //! \returns a reference to a std::ostream reference |
---|
537 | //! \details The output integer responds to std::hex, std::oct, std::hex, std::upper and |
---|
538 | //! std::lower. The output includes the suffix \a \b h (for hex), \a \b . (\a \b dot, for dec) |
---|
539 | //! and \a \b o (for octal). There is currently no way to supress the suffix. |
---|
540 | //! \details If you want to print an Integer without the suffix or using an arbitrary base, then |
---|
541 | //! use IntToString<Integer>(). |
---|
542 | //! \sa IntToString<Integer> |
---|
543 | friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a); |
---|
544 | //@} |
---|
545 | |
---|
546 | #ifndef CRYPTOPP_DOXYGEN_PROCESSING |
---|
547 | //! modular multiplication |
---|
548 | CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m); |
---|
549 | //! modular exponentiation |
---|
550 | CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m); |
---|
551 | #endif |
---|
552 | |
---|
553 | private: |
---|
554 | |
---|
555 | Integer(word value, size_t length); |
---|
556 | int PositiveCompare(const Integer &t) const; |
---|
557 | |
---|
558 | IntegerSecBlock reg; |
---|
559 | Sign sign; |
---|
560 | |
---|
561 | #ifndef CRYPTOPP_DOXYGEN_PROCESSING |
---|
562 | friend class ModularArithmetic; |
---|
563 | friend class MontgomeryRepresentation; |
---|
564 | friend class HalfMontgomeryRepresentation; |
---|
565 | |
---|
566 | friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b); |
---|
567 | friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b); |
---|
568 | friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b); |
---|
569 | friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor); |
---|
570 | #endif |
---|
571 | }; |
---|
572 | |
---|
573 | //! |
---|
574 | inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;} |
---|
575 | //! |
---|
576 | inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;} |
---|
577 | //! |
---|
578 | inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;} |
---|
579 | //! |
---|
580 | inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;} |
---|
581 | //! |
---|
582 | inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;} |
---|
583 | //! |
---|
584 | inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;} |
---|
585 | //! |
---|
586 | inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);} |
---|
587 | //! |
---|
588 | inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);} |
---|
589 | //! |
---|
590 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
591 | inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);} |
---|
592 | //! |
---|
593 | inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);} |
---|
594 | //! |
---|
595 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
596 | inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);} |
---|
597 | //! |
---|
598 | inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);} |
---|
599 | //! |
---|
600 | //! \sa a_times_b_mod_c() and a_exp_b_mod_c() |
---|
601 | inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);} |
---|
602 | |
---|
603 | NAMESPACE_END |
---|
604 | |
---|
605 | #ifndef __BORLANDC__ |
---|
606 | NAMESPACE_BEGIN(std) |
---|
607 | inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b) |
---|
608 | { |
---|
609 | a.swap(b); |
---|
610 | } |
---|
611 | NAMESPACE_END |
---|
612 | #endif |
---|
613 | |
---|
614 | #endif |
---|